Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber
Chuan-Biao Zhang1,2 , Dian-Qiang Su1,2 , Zhong-Hua Ji1,2 , Yan-Ting Zhao1,2** , Lian-Tuan Xiao1,2 , Suo-Tang Jia1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 0300062 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Abstract :Nanofibers have many promising applications because of their advantages of high power density and ultralow saturated light intensity. We present here a Zeeman shift of the Doppler-broadened cesium D$_2$ transition using a tapered optical nanofiber in the presence of a magnetic field. When a weak magnetic field is parallel to the propagating light in the nanofiber, the Zeeman shift rates for different circularly polarized spectra are observed. For the $\sigma^{+}$ component, the typical linear Zeeman shift rates of $F=3$ and $F=4$ ground-state cesium atoms are measured to be 3.10($\pm$0.19) MHz/G and 3.91($\pm$0.16) MHz/G. For the $\sigma^{-}$ component, the values are measured to be $-$2.81($\pm$0.25) MHz/G, and $-$0.78($\pm$0.28) MHz/G. The Zeeman shift using the tapered nanofiber can help to develop magnetometers to measure the magnetic field at the narrow local region and the dispersive signal to lock laser frequency.
收稿日期: 2018-05-17
出版日期: 2018-07-15
:
32.60.+i
(Zeeman and Stark effects)
32.10.Fn
(Fine and hyperfine structure)
81.07.-b
(Nanoscale materials and structures: fabrication and characterization)
[1] Wang X Z, Li Y and Bao X Y 2009 Appl. Opt. 48 6827 [2] Fenton E F, Khan A, Solano P, Orozco L A and Fredrik K F 2018 Opt. Lett. 43 1534 [3] Cao Y C, Jin W, Ho L H and Liu Z B 2012 Opt. Lett. 37 214 [4] Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503 [5] Li Y and Hu Y J 2013 Chin. Phys. B 22 34206 [6] Spillane S M, Pati G S, Salit K, Hall M, Kumar P, Beausoleil R G and Shahriar M S 2008 Phys. Rev. Lett. 100 233602 [7] Thapa R, Knabe K, Faheem M, Naweed A, Weaver O L and Corwin K L 2006 Opt. Lett. 31 2489 [8] Jones D E, Franson J D and Pittman T B 2015 Phys. Rev. A 92 043806 [9] Hendrickson S M, Lai M M, Pittman T B and Franson J D 2010 Phys. Rev. Lett. 105 173602 [10] Salit K, Salit M, Krishnamurthy S, Wang Y, Kumar P and Shahriar M S 2011 Opt. Express 19 22874 [11] Bize S, Laurent P, Abgrall M, Marion H et al 2005 J. Phys. B 38 S449 [12] Balykin V I, Hakuta K, Le K F, Liang J Q and Morinaga M 2004 Phys. Rev. A 70 011401 [13] Laurent P, Abgrall M, Jentsch C, Lemonde P, Santarelli G, Clairon A, Maksimovic I et al 2006 Appl. Phys. B 84 683 [14] Beverini N, Maccioni E, Marsili P, Ruffini A and Sorrentino F 2001 Appl. Phys. B 73 133 [15] King P W and Learner R C M 1971 Proc. R. Soc. London Ser. A 323 431 [16] Treutlein P, Hommelhoff P, Steinmetz T, Hänsch T W and Reichel J 2004 Phys. Rev. Lett. 92 203005 [17] Watkins A, Tiwari V B, Jonathan M, Ward J M, Deasy K and Chormaic S N 2013 Proc. SPIE 8785 87850S [18] Sorensen H L, Polzik E S and Appel J 2014 J. Lightwave Technol. 32 1886 [19] Wiedemann U, Karapetyan K, Dan C, Pritzkau D, Alt W, Irsen S and Meschede D 2010 Opt. Express 18 7693 [20] Hoffman J E, Ravets S, Grover J A, Solano P, Kordell P R, Wong J D, Orozco L A and Rolston S L 2014 AIP Adv. 4 067124 [21] Morrissey M J, Deasy K, Wu Y Q, Chakrabarti S and Chormaic S N 2009 Rev. Sci. Instrum. 80 053102 [22] Davidson I A, Azzouz H, Hueck K and Bourennane M 2016 Rev. Sci. Instrum. 87 053104 [23] Lai M M, Franson J D and Pittman T B 2013 Appl. Opt. 52 2595 [24] Gunawardena M, Hess P W, Strait J and Majumder P K 2008 Rev. Sci. Instrum. 79 103110 [25] Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603 [26] Smith D A and Hughes I G 2004 Am. J. Phys. 72 631 [27] Lindvall T and Tittonen I 2009 Phys. Rev. A 80 032505 [28] Lobov G S, Marinins A, Etcheverry S, Zhao Y C, Vasileva E, Sugunan A, Laurell F, Thylén L, Wosinski L, Östling M, Toprak M S and Popov S 2017 Opt. Mater. Express 7 52 [29] Dawkins S T, Mitsch R, Reitz D, Vetsch E and Rauschenbeutel A 2011 Phys. Rev. Lett. 107 243601 [30] Jung Y M, Brambilla G and Richardson D J 2010 Opt. Lett. 35 2034 [31] Takeshi I, Shinichi O and Motoichi O 1989 Jpn. J. Appl. Phys. 28 L1839 [32] Corwin K L, Lu Z T, H, C F, Epstein R J and Wieman C E 1998 Appl. Opt. 37 3295
[1]
. [J]. 中国物理快报, 2019, 36(4): 43201-.
[2]
. [J]. 中国物理快报, 2018, 35(12): 129901-.
[3]
. [J]. 中国物理快报, 2018, 35(4): 43203-.
[4]
. [J]. 中国物理快报, 2017, 34(10): 103302-.
[5]
. [J]. 中国物理快报, 2016, 33(10): 103201-103201.
[6]
. [J]. 中国物理快报, 2015, 32(10): 100701-100701.
[7]
. [J]. 中国物理快报, 2015, 32(03): 33201-033201.
[8]
. [J]. 中国物理快报, 2014, 31(10): 103202-103202.
[9]
. [J]. 中国物理快报, 2013, 30(4): 43101-043101.
[10]
. [J]. Chin. Phys. Lett., 2013, 30(1): 13101-013101.
[11]
WANG Yuan-Sheng;XIA Chang-Long;GUO Jing**;LIU Xue-Shen**
. Relative Phase Dependence of Double Ionization in a Synthesized Laser Pulse [J]. 中国物理快报, 2011, 28(8): 83202-083202.
[12]
YU Geng-Hua;;ZHONG Jia-Qi;;LI Run-Bing;WANG Jin;ZHAN Ming-Sheng;**
. Magic Wavelength of an Optical Clock Transition of Barium [J]. 中国物理快报, 2011, 28(7): 73201-073201.
[13]
LI Guo-Hui;XU Xin-Ye**
. Raman Sideband Cooling of Two-Valence-Electron Fermionic Atoms [J]. 中国物理快报, 2011, 28(6): 63203-063203.
[14]
HAN Shun-Li;CHENG Bing;ZHANG Jing-Fang;XU Yun-Fei;WANG Zhao-Ying;LIN Qiang. Polarization Gradient Cooling by Zeeman-Effect-Assisted Saturated Absorption [J]. 中国物理快报, 2009, 26(12): 123702-123702.
[15]
WANG De-Hua;HUANG Kai-Yun. Coherent Control of Photodetachment of H- in Perpendicular Electric and Magnetic Fields [J]. 中国物理快报, 2009, 26(9): 93201-093201.