Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique
Shao-Long Chen1 , Peng-Peng Zhou1,2 , Shi-Yong Liang1,2 , Wei Sun1 , Huan-Yao Sun1 , Yao Huang1 , Hua Guan1* , Ke-Lin Gao1,3*
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China2 University of Chinese Academy of Sciences, Beijing 100049, China3 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract :Ion deceleration has played a critical role in ion-related research when the ions are produced in the form of a high-energy beam. We present a deceleration method combining electrostatic lens and ion trap technique, which can effectively decelerate ions to energy below the trapping potential of a typical ion trap. The experiments were performed on metastable $1s2s\,{}^{3}\!S_1\,{\rm Li}^{+}$ ions, and demonstrated that the kinetic energy could easily be reduced from $\sim$450 eV to a few eV, with the latter being confirmed using the Doppler-shifted fluorescence spectra.
收稿日期: 2020-03-31
出版日期: 2020-06-21
:
32.70.-n
(Intensities and shapes of atomic spectral lines)
32.70.Jz
(Line shapes, widths, and shifts)
32.10.Fn
(Fine and hyperfine structure)
07.75.+h
(Mass spectrometers)
引用本文:
. [J]. 中国物理快报, 2020, 37(7): 73201-.
Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique. Chin. Phys. Lett., 2020, 37(7): 73201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/37/7/073201
或
https://cpl.iphy.ac.cn/CN/Y2020/V37/I7/73201
[1] Rajput J, Roy A, Kanjilal D, Ahuja R and Safvan C 2010 Rev. Sci. Instrum. 81 043301
[2] Safvan C, Rajput J, Roy A, Kanjilal D and Ahuja R 2012 J. Phys.: Conf. Ser. 388 142006
[3] Lebius H, Brenac A, Huber B, Maunoury L, Gustavo F and Cormier D 2003 Rev. Sci. Instrum. 74 2276
[4] Stöhlker T, Mokler P, Bosch F et al. 2000 Phys. Rev. Lett. 85 3109
[5] Lubinski G, Juhász Z, Morgenstern R and Hoekstra R 2001 Phys. Rev. Lett. 86 616
[6] Schmöger L, Schwarz M, Baumann T M, Versolato O, Piest B, Pfeifer T, Ullrich J, Schmidt P O and Crespo López-Urrutia J 2015 Rev. Sci. Instrum. 86 103111
[7] Micke P, Leopold T, King S, Benkler E, Spieß L, Schmoeger L, Schwarz M, López-Urrutia J C and Schmidt P 2020 Nature 578 60
[8] Kozlov M, Safronova M, López-Urrutia J C and Schmidt P 2018 Rev. Mod. Phys. 90 045005
[9] Clarke J J and van Wijngaarden W A 2003 Phys. Rev. A 67 012506
[10] Holt R, Rosner S, Gaily T and Adam A 1980 Phys. Rev. A 22 1563
[11] Fan B, Lurio A and Grischkowsky D 1978 Phys. Rev. Lett. 41 1460
[12] Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K and zu Putlitz G 1981 Z. Phys. A 300 25
[13] Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. Lett. 32 083701
[14] Knight R and Prior M 1980 Phys. Rev. A 21 179
[15] Hijazi H and Meyer F W 2013 Rev. Sci. Instrum. 84 033305
[16] Chen S, Liang S, Sun W, Huang Y, Guan H and Gao K 2019 Rev. Sci. Instrum. 90 043112
[17] Budker G I 1967 Sov. J. At. Energy 22 438
[18] Hänsch T W and Schawlow A L 1975 Opt. Commun. 13 68
[19] Sairam T, Bhatt P, Kumar A, Kumar H and Safvan C 2015 Phys. Plasmas 22 113503
[20] Zhao Q, Zhai G and Kwok R 2006 Mater. Lett. 60 3084
[21] Gordon M and Giapis K 2005 Rev. Sci. Instrum. 76 083302
[22] Shimizu S, Sasaki N, Ogata S and Tsukakoshi O 1996 Rev. Sci. Instrum. 67 3664
[23] Foo K, Lawson R, Feng X and Lau W 1991 J. Vac. Sci. Technol. A: Vac. Surf. Films 9 312
[24] Hoffman E D and Stroobant V 2007 Mass Spectrometry: Principles Applications (Chichester: John Wiley & Sons) vol 1
[25] Douglas D 1989 Can. J. Spectrosc. 34 38
[26] Church D 1969 J. Appl. Phys. 40 3127
[27] Su X, Lu W and Rabinowitz J D 2017 Anal. Chem. 89 5940
[28] Bi Q R, Hou J J, Yang M, Shen Y, Qi P, Feng R H, Dai Z, Yan B P, Wang J W, Shi X J, Wu And Guo D A W Y 2017 J. Am. Soc. Mass Spectrom. 28 443
[29] Rosen E P, Bokhart M T, Nazari M and Muddiman D C 2015 Anal. Chem. 87 10483
[30] Aramendı́a M A, Marinas A, Marinas J M, Sánchez E, Urbano F J, Guillou C, Moreno Rojas J M, Moalem M and Rallo L 2010 Rapid Commun. Mass Spectrom. 24 1457
[31] Yang H, Yang C and Sun T 2018 Rapid Commun. Mass Spectrom. 32 1353
[32] Zhou X, Xiong C, Xu G, Liu H, Tang Y, Zhu Z, Chen R, Qiao H, Tseng Y H, Peng W P, Nie Z and Chen Y 2011 J. Am. Soc. Mass Spectrom. 22 386
[33] Gravesen J and Willatzen M 2006 Physica B 371 112
[34] Paul W 1990 Rev. Mod. Phys. 62 531
[35] Wang Y, Huang Z, Jiang Y, Xiong X, Deng Y, Fang X and Xu W 2013 J. Mass Spectrom. 48 937
[36] Hager J W 2002 Rapid Commun. Mass Spectrom. 16 512
[1]
. [J]. 中国物理快报, 2015, 32(01): 13201-013201.
[2]
. [J]. 中国物理快报, 2014, 31(10): 103203-103203.
[3]
ZHAO Yan-Ting;ZHAO Jian-Ming;XIAO Lian-Tuan;YIN Wang-Bao;JIA Suo-Tang. Electromagnetically Induced Absorption and Transparency Spectra of Degenerate Two-Level Systems with a Strong Coupling Field in Cs Vapour [J]. 中国物理快报, 2004, 21(1): 76-78.
[4]
ZHANG Hong;ZHANG Ji-Yan;YANG Xiang-Dong;YANG Guo-Hong;ZHENG Zhi-Jian. Analysis of Charge State Distribution by Non-Local Thermodynamic-Equilibrium Spin-Orbit-Split-Array Collisional Radiative Model [J]. 中国物理快报, 2003, 20(9): 1474-1477.
[5]
CHENG Xin-Lu;YANG Li;ZHANG Hong;YANG Xiang-Dong. Monte Carlo Simulation of Opacities of Hot and Dense Au Plasma
in the Unresolved Transition Array Approximation [J]. 中国物理快报, 2002, 19(7): 931-933.
[6]
LI Yongping;XIA Shangda;ZHANG Haifeng. ATOMIC-LIKE ORBITS AND LANTHNIDE CONTRACTION [J]. 中国物理快报, 1989, 6(10): 436-439.