Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas
Jiechen Xu1 , Jinfeng Liao2,3** , Miklos Gyulassy1**
1 Department of Physics, Columbia University, New York 10027, USA
2 Physics Department and CEEM, Indiana University, Bloomington 47408, USA
3 RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, New York 11973, USA
Abstract :We utilize a new framework, CUJET3.0, to deduce the energy and temperature dependence of the jet transport parameter, q^ (E <10 GeV, T ), from a combined analysis of available data on nuclear modification factor and azimuthal asymmetries from high energy nuclear collisions at RHIC/BNL and LHC/CERN. Extending a previous perturbative-QCD based jet energy loss model (known as CUJET2.0) with (2+1)D viscous hydrodynamic bulk evolution, this new framework includes three novel features of nonperturbative physics origin: (i) the Polyakov loop suppression of color-electric scattering (aka 'semi-QGP' of Pisarski et al .), (ii) the enhancement of jet scattering due to emergent magnetic monopoles near T c (aka 'magnetic scenario' of Liao and Shuryak), and (iii) thermodynamic properties constrained by lattice QCD data. CUJET3.0 reduces to v2.0 at high temperatures T> 400 MeV, while greatly enhances q^ near the QCD deconfinement transition temperature range. This enhancement accounts well for the observed elliptic harmonics of jets with pT > 10 GeV. Extrapolating our data-constrained q^ down to thermal energy scales, E ∼2 GeV, we find for the first time a remarkable consistency between high energy jet quenching and bulk perfect fluidity with η /s ∼ T 3 q^ ∼0.1 near T c .
收稿日期: 2015-07-31
出版日期: 2015-10-02
:
25.75.-q
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
12.38.Mh
(Quark-gluon plasma)
24.85.+p
(Quarks, gluons, and QCD in nuclear reactions)
13.87.-a
(Jets in large-Q2 scattering)
[1] Gyulassy M and McLerran L 2005 Nucl. Phys. A 750 30
[2] Shuryak E V 2005 Nucl. Phys. A 750 64
[3] Muller B, Schukraft J and Wyslouch B 2012 Annu. Rev. Nucl. Part. Sci. 62 361
[4] Danielewicz P and Gyulassy M 1985 Phys. Rev. D 31 53
[5] Hirano T and Gyulassy M 2006 Nucl. Phys. A 769 71
[6] Majumder A, Muller B and Wang X N 2007 Phys. Rev. Lett. 99 192301
[7] Song H and Heinz W 2008 Phys. Rev. C 78 024902
[8] Shen C, Heinz U, Huovinen P and Song H 2010 Phys. Rev. C 82 054904
[9] Gale C, Jeon S, Schenke B, Tribedy P and Venugopalan R 2013 Phys. Rev. Lett. 110 012302
[10] Burke K M et al 2014 Phys. Rev. C 90 014909
[11] Baier R, Schiff D and Zakharov B 2000 Annu. Rev. Nucl. Part. Sci. 50 37
[12] Gyulassy M, Vitev I, Wang X N and Zhang B W 2003 arXiv:nucl-th/0302077
[13] Kovner A and Wiedemann U A 2003 arXiv:hep-ph/0304151
[14] Jacobs P and Wang X N 2005 Prog. Part. Nucl. Phys. 54 443
[15] Armesto N, Cole B, Gale C, Horowitz W A and Jacobs P 2012 Phys. Rev. C 86 064904
[16] Casalderrey-Solana J, Liu H, Mateos D, Rajagopal K and Wiedemann U A 2011 arXiv:1101.0618
[17] Horowitz W and Gyulassy M 2011 Nucl. Phys. A 872 265
[18] Zhang X and Liao J 2014 Phys. Rev. C 89 014907
[19] Zhang X and Liao J 2013 Phys. Rev. C 87 044910
[20] Liu H, Rajagopal K and Wiedemann U A J. High Energy Phys. 070703 066
[21] Hidaka Y and Pisarski R D 2008 Phys. Rev. D 78 071501
[22] Hidaka Y and Pisarski R D 2010 Phys. Rev. D 81 076002
[23] Dumitru A, Guo Y, Hidaka Y, Altes C P K and Pisarski R D 2011 Phys. Rev. D 83 034022
[24] Lin S, Pisarski R D and Skokov V V 2014 Phys. Lett. B 730 236
[25] Liao J and Shuryak E 2007 Phys. Rev. C 75 054907
[26] Liao J and Shuryak E 2008 Phys. Rev. Lett. 101 162302
[27] Liao J and Shuryak E 2012 Phys. Rev. Lett. 109 152001
[28] Renk T, Holopainen H, Heinz U and Shen C 2011 Phys. Rev. C 83 014910
[29] Bazavov A et al 2014 Phys. Rev. D 90 094503
[30] Bali G S 2001 Phys. Rep. 343 1
[31] Ripka G 2003 arXiv:hep-ph/0310102
[32] Kondo K I, Kato S, Shibata A and Shinohara T 2015 Phys. Rep. 579 1
[33] D'Alessandro A and D'Elia M 2008 Nucl. Phys. B 799 241
[34] D'Alessandro A, D'Elia M and Shuryak E V 2010 Phys. Rev. D 81 094501
[35] Bonati C and D'Elia M 2013 Nucl. Phys. B 877 233
[36] Chernodub M N and Zakharov V I 2007 Phys. Rev. Lett. 98 082002
[37] Betz B and Gyulassy M 2012 Phys. Rev. C 86 024903
[38] Gyulassy M, Vitev I and Wang X N 2001 Phys. Rev. Lett. 86 2537
[39] Jia J and Wei R 2010 Phys. Rev. C 82 024902
[40] Liao J and Shuryak E 2009 Phys. Rev. Lett. 102 202302
[41] Betz B and Gyulassy M 2013 arXiv:1305.6458[nucl-th]
[42] Betz B and Gyulassy M 2014 J. High Energy Phys. 1408 090 [Erratum-ibid. 2014 1410 043 ]
[43] Li D, Liao J and Huang M 2014 Phys. Rev. D 89 126006
[44] Xu J, Buzzatti A and Gyulassy M 2014 J. High Energy Phys. 1408 063
[45] Liu H, Rajagopal K and Wiedemann U A 2006 Phys. Rev. Lett. 97 182301
[46] Gyulassy M and Wang X N 1994 Nucl. Phys. B 420 583
[47] Gyulassy M Levai P and Vitev I 2001 Nucl. Phys. B 594 371
[48] Djordjevic M and Gyulassy M 2004 Nucl. Phys. A 733 265
[49] Buzzatti A and Gyulassy M 2012 Phys. Rev. Lett. 108 022301
[50] Buzzatti A and Gyulassy M 2013 Nucl. Phys. A 904 779c
[51] Djordjevic M and Heinz U W 2008 Phys. Rev. Lett. 101 022302
[52] Baier R, Mueller A and Schiff D 2007 Phys. Lett. B 649 147
[53] Renk T 2014 Phys. Rev. C 89 067901
[54] Peshier A 2006 arXiv:hep-ph/0601119
[55] Zakharov B 2008 JETP Lett. 88 781
[56] Randall L, Rattazzi R and Shuryak E V 1999 Phys. Rev. D 59 035005
[57] Bazavov A et al 2009 Phys. Rev. D 80 014504
[58] Borsanyi S et al 2010 J. High Energy Phys. 1009 073
[59] Nakamura A, Saito T and Sakai S 2004 Phys. Rev. D 69 014506
[60] Thoma M H and Gyulassy M 1991 Nucl. Phys. B 351 491
[61] Wang X N 2014 Private Communication
[62] Cacciari M, Nason P and Vogt R 2005 Phys. Rev. Lett. 95 122001
[63] Glauber R and Matthiae G 1970 Nucl. Phys. B 21 135
[64] Kniehl B A, Kramer G and Potter B 2000 Nucl. Phys. B 582 514
[65] Peterson C, Schlatter D, Schmitt I and Zerwas P M 1983 Phys. Rev. D 27 105
[66] Adare A et al 2008 Phys. Rev. Lett. 101 232301
[67] Adare A et al 2010 Phys. Rev. Lett. 105 142301
[68] Adare A et al 2013 Phys. Rev. C 87 034911
[69] Abelev B et al 2009 Phys. Rev. C 80 044905
[70] Abelev B et al 2013 Phys. Lett. B 719 18
[71] Abelev B et al 2013 Phys. Lett. B 720 52
[72] Aad G et al 2012 Phys. Lett. B 707 330
[73] Chatrchyan S et al 2012 Eur. Phys. J. C 72 1945
[74] Chatrchyan S et al 2012 Phys. Rev. Lett. 109 022301
[75] Abelev B et al 2012 J. High Energy Phys. 1209 112
[76] Abelev B et al 2014 Phys. Rev. C 90 034904
[77] C M S Collaboration 2012 CMS-PAS-HIN-12
[78] Bazavov A et al 2013 Phys. Rev. D 88 094021
[79] Borsanyi S et al 2012 J. High Energy Phys. 1201 138
[80] Ratti C and Shuryak E 2009 Phys. Rev. D 80 034004
[81] Christiansen N, Haas M, Pawlowski J M and Strodthoff N 2014 arXiv:1411.7986 [hep-ph]
[1]
. [J]. 中国物理快报, 2023, 40(3): 32101-.
[2]
. [J]. 中国物理快报, 2021, 38(8): 81201-.
[3]
. [J]. 中国物理快报, 2017, 34(12): 122501-.
[4]
. [J]. 中国物理快报, 2017, 34(10): 101201-.
[5]
. [J]. 中国物理快报, 2017, 34(10): 102501-.
[6]
. [J]. 中国物理快报, 2017, 34(6): 62501-.
[7]
. [J]. 中国物理快报, 2017, 34(5): 52501-.
[8]
. [J]. 中国物理快报, 2016, 33(08): 82501-082501.
[9]
. [J]. 中国物理快报, 2016, 33(01): 12502-012502.
[10]
. [J]. 中国物理快报, 2015, 32(08): 81201-081201.
[11]
. [J]. 中国物理快报, 2014, 31(10): 102401-102401.
[12]
. [J]. 中国物理快报, 2014, 31(07): 72501-072501.
[13]
. [J]. 中国物理快报, 2014, 31(03): 32501-032501.
[14]
. [J]. 中国物理快报, 2014, 31(1): 11202-011202.
[15]
. [J]. 中国物理快报, 2013, 30(8): 82501-082501.