1School of Informatics, Guizhou University of Finance and Economics, Guiyang 550025 2College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 3Department of Physics, University of Colorado, Boulder 80309, USA
Abstract:We study the effects of running coupling and gluon number fluctuations in the latest diffractive deep inelastic scattering data. It is found that the description of the data is improved once the running coupling and gluon number fluctuations are included with $\chi^{2}/{\rm d.o.f.}=0.867$, $\chi^{2}/{\rm d.o.f.}=0.923$ and $\chi^{2}/{\rm d.o.f.}=0.878$ for three different groups of experimental data. The values of diffusive coefficient subtracted from the fit are smaller than the ones obtained by considering only the gluon number fluctuations in our previous studies. The smaller values of the diffusive coefficient are in agreement with the theoretical predictions, where the gluon number fluctuations are suppressed by the running coupling which leads to smaller values of the diffusive coefficient.
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))