Strong Interaction Effect on Jet Energy Loss with Detailed Balance
Jing-Ya Zhang, Luan Cheng**
School of Physics, Dalian University of Technology, Dalian 116024
Abstract :The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive parameter $q$. In the presence of strong interaction, more gluons stay at low-energy state than the free gluon case. The strong interaction effect is found to be important for jet energy loss with detailed balance at intermediate jet energy. The energy gain via absorption increases with the strong interaction. This will affect the nuclear modification factor $R_{\rm AA}$ and the parameter of $\hat{q}$ at intermediate jet energy.
收稿日期: 2017-04-24
出版日期: 2017-09-27
:
12.38.Mh
(Quark-gluon plasma)
11.80.La
(Multiple scattering)
25.75.-q
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
12.40.Ee
(Statistical models)
[1] Zhang B W and Wang E K 2003 Chin. Phys. Lett. 20 639 [2] Adcox k et al 2001 Phys. Rev. Lett. 88 022301 Adler C et al 2002 Phys. Rev. Lett. 89 202301 [3] Betz B and Gyulassy M 2015 Chin. Phys. Lett. 32 121204 [4] Adler C et al 2003 Phys. Rev. Lett. 90 082302 [5] Gyulassy M and Wang X N 1994 Nucl. Phys. B 420 583 Wang X N, Gyulassy M and Plumer M 1995 Phys. Rev. D 51 3436 [6] Baier R, Dokshitzer Y L, Peigne S and Schiff D 1995 Phys. Lett. B 345 277 Baier R, Dokshitzer Y L, Mueller A H, Peigne S and Schiff D 1997 Nucl. Phys. B 484 265 [7] Zakharov B G 1996 JETP Lett. 63 952 Zakharov B G 1997 JETP Lett. 65 615 [8] Gyulassy M, Levai P and Vitev I 2000 Phys. Rev. Lett. 85 5535 Gyulassy M, Levai P and Vitev I 2001 Nucl. Phys. B 594 371 [9] Wiedemann U A 2000 Nucl. Phys. B 588 303 [10] Guo X and Wang X N 2000 Phys. Rev. Lett. 85 3591 [11] Cheng L, Liu J and Wang E 2014 Sci. Chin. Phys. Mech. Astron. 57 2070 [12] Ma Z J, Zhu J Q, Shi C Y and Li Y D 2015 Chin. Phys. Lett. 32 121202 [13] Wang E and Wang X N 2001 Phys. Rev. Lett. 87 142301 [14] Tsallis C 2009 Introduction To Nonextensive Statistical Mechanics–Approaching A Complex World (New York: Springer) Tirnakli U, Ananos G F J and Tsallis C 2001 Phys. Lett. A 289 51 [15] Plastino A R and Plastino A 1994 Phys. Lett. A 193 251 [16] Alberico W M, Lavagno A and Quarati P 2000 Eur. Phys. J. C 12 499 Alberico W M, Lavagno A and Quarati P 2001 Nucl. Phys. A 680 94 [17] Huang Z F, Su G Z, Kaabouchi A E L, Wang Q A and Chen J C 2010 J. Stat. Mech. 2010 L05001 [18] Beck C and Schlogl F 1993 Thermodynamics of Chaotic Systems (Cambridge: Cambridge University Press) [19] Beck C 2000 Physica A 286 164 [20] Teweldeberhan A M, Plastino A R and Miller H G 2005 Phys. Lett. A 343 71 [21] Eskola K J, Kajantie k, Ruuskanen P V and Tuominen K 2000 Nucl. Phys. B 570 379 [22] Shen C, U Heinz U, Huovinen P and Song H 2010 Phys. Rev. C 82 054904 [23] Braaten E and Pisarski R D 1990 Nucl. Phys. B 337 569 [24] Udayanandan K M, Sethumadhavan P and Bannur V M 2007 Phys. Rev. C 76 044908
[1]
. [J]. 中国物理快报, 2021, 38(8): 81201-.
[2]
. [J]. 中国物理快报, 2020, 37(11): 112501-.
[3]
. [J]. 中国物理快报, 2017, 34(4): 41201-041201.
[4]
. [J]. 中国物理快报, 2015, 32(12): 121101-121101.
[5]
. [J]. 中国物理快报, 2015, 32(12): 121201-121201.
[6]
. [J]. 中国物理快报, 2015, 32(12): 121202-121202.
[7]
. [J]. 中国物理快报, 2015, 32(12): 121204-121204.
[8]
. [J]. 中国物理快报, 2015, 32(09): 92501-092501.
[9]
. [J]. 中国物理快报, 2015, 32(08): 81101-081101.
[10]
. [J]. 中国物理快报, 2015, 32(08): 81201-081201.
[11]
. [J]. 中国物理快报, 2015, 32(02): 21201-021201.
[12]
. [J]. 中国物理快报, 2014, 31(1): 11202-011202.
[13]
. [J]. 中国物理快报, 2013, 30(6): 62502-062502.
[14]
. [J]. 中国物理快报, 2013, 30(5): 51301-051301.
[15]
. [J]. Chin. Phys. Lett., 2013, 30(3): 31201-031201.