Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser
ZHANG Pin-Liang1, TANG Xiu-Zhang1**, LI Ye-Jun1, WANG Zhao1, TIAN Bao-Xian1, YIN Qian1, LU Ze1, XIANG Yi-Huai1, GAO Zhi-Xing1, LI Jing1, HU Feng-Ming1, GONG Zi-Zheng2
1High Power Excimer Laser Laboratory, China Institute of Atomic Energy, Beijing 102413 2National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094
Abstract:The HEAVEN-I laser is used for direct drive quasi-isentropic compression up to ~18 GPa in samples of aluminum without being temporal pulse shaped. The monotonically increasing loading is with a rise time over 17 ns. The compression history is well reproduced by the 1D radiation hydrodynamics simulation. We find that a small shock precursor where the backward integration method cannot process is formed at the beginning of illumination. We compare the loading process of HEAVEN-I with the typical profile (concave down, prefect pulse shape), the results show that a typical profile can obtain more slowly rising and higher pressure, and the shock precursor has significant effects on temperature and entropy production. However, it is demonstrated that the HEAVEN-I is an excellent optical source for direct laser-driven quasi-isentropic compression, even if it produces more temperature rise and entropy than the typical profile.
[1] Becker A, Nettelmann N, Holst B and Redmer R 2013 Phys. Rev. B 88 045122 [2] Seagle C T, Davis J P, Martin M R and Hanshaw H L 2013 Appl. Phys. Lett.102 244104 [3] Brown J L, Alexander C S, Asay J R, Vogler T J, Dolan D H and Belof J L 2014 J. Appl. Phys.115 043530 [4] Wang J, Smith R F, Eggert J H, Braun D G, Boehly T R, Patterson J R, Celliers P M, Jeanloz R, Collins G W and Duffy T S 2013 J. Appl. Phys.114 023513 [5] Amadou N, Brambrink E, Benuzzi-Mounaix A, Vinci T, Resseguier T, Mazevet S, Morard G, Guyot F, Ozaki N, Miyanisi K and Koenig M 2012 AIP Conf. Proc.1426 1525 [6] Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F and Remington B A 2006 High Energy Density Phys.2 113 [7] Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H and Kalantar D 2004 Phys. Rev. Lett.92 075002 [8] Amadou N, Brambrink E, Benuzzi-Mounaix A, Huser G, Guyot F, Mazevet S, Morard G, Resseguier T de, Vinci T, Myanishi K, Ozaki N, Kodama R, Boehly T, Henry O, Raffestion D and Koening M 2013 High Energy Density Phys.9 243 [9] Ping Y, Coppari F, Hicks D G, Yaakobi B, Fratanduono D E, Hamel S, Eggert J H, Rygg J R, Smith R F, Swift D C, Braun D G, Boehly T R and Collins G W 2013 Phys. Rev. Lett.111 065502 [10] Swift D C and Johnson R P 2005 Phys. Rev. E 71 066401 [11] Tian B X, Wang Zhao, Dai H, Xiang Y H, Liang J and Tang X Z 2013 At. Energy Sci. Technol.47 1633 (in Chinese) [12] Shaw M J, Baily R and Key M H 1993 Laser Part. Beams11 331 [13] Hayes D 2001 SAND 2001-1440 (USA: Sandia National Laboratories) [14] Hayes D and Hall C 2002 AIP Conf. Proc.620 1177 [15] Li M, Zhao M J, Zhang H P, Yuan H, Zhao J H and Sun C W 2010 Acta Armamentarii31 1084 (in Chinese) [16] Wang G H, Bai J S, Sun C W, Mo J J, Wang G J, Zhao J H, Tan F L and Hu X J 2008 Chin. J. High Press. Phys.22 149 (in Chinese) [17] Computer code HYADES, version 01.05.11 (Cascade Applied Sciences Inc., Golden, Colorado 1998) [18] Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S and Zhang Y S 2013 High Power Laser Part. Beams25 2891 (in Chinese)