On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow
Huan Zheng1 , Qian Chen1 , Baoqing Meng1 , Junsheng Zeng2 , Baolin Tian1,2**
1 Institute of Applied Physics and Computational Mathematics, Beijing 1000942 College of Engineering, Peking University, Beijing 100871
Abstract :We discuss evolutions of nonlinear features in Richtmyer–Meshkov instability (RMI), which are known as spikes and bubbles. In single-phase RMI, the nonlinear growth has been extensively studied but the relevant investigation in multiphase RMI is insufficient. Therefore, we illustrate the dynamic coupling behaviors between gas phase and particle phase and then analyze the growth of the nonlinear features theoretically. A universal model is proposed to describe the nonlinear finger (spike and bubble) growth velocity qualitatively in multiphase RMI. Both the effects of gas and particles have been taken into consideration in this model. Further, we derive the analytical expressions of the nonlinear growth model in limit cases (equilibrium flow and frozen flow). A novel compressible multiphase particle-in-cell (CMP-PIC) method is used to validate the applicability of this model. Numerical finger growth velocity matches well with our model. The present study reveals that particle volume fraction, particle density and Stokes number are the three key factors, which dominate the interphase momentum exchange and further induce the unique property of multiphase RMI.
收稿日期: 2019-09-28
出版日期: 2019-12-23
:
52.57.Fg
(Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))
52.57.-z
(Laser inertial confinement)
47.20.-k
(Flow instabilities)
52.50.Lp
(Plasma production and heating by shock waves and compression)
[1] Zhou Y 2017 Phys. Rep. 720 1 [2] Luo X S, Zhang F, Ding J C, Si T, Yang J M, Zhai Z G and Wen C Y 2018 J. Fluid Mech. 849 231 [3] Zhang Q and Guo W X 2016 J. Fluid Mech. 786 47 [4] Zhai Z G, Zhang F, Zhou Z B, Ding J C and Wen C Y 2019 Sci. Chin.-Phys. Mech. Astron. 62 124712 [5] Li M and Ye W H 2019 Chin. Phys. Lett. 36 025201 [6] Tian B L, Zhang X T, Qi J and Wang S H 2011 Chin. Phys. Lett. 28 114701 [7] Gao F J, Zhang Y S, He Z W et al 2016 Phys. Fluids 28 114101 [8] Raman K S, Smalyuk V A, Casey D T et al 2014 Phys. Plasmas 21 072710 [9] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297 [10] Meshkov E E 1972 Fluid Dyn. 4 101 [11] Saffman P G 1962 J. Fluid Mech. 13 120 [12] Ukai S, Balakrishnan K and Menon S 2010 Phys. Fluids 22 104103 [13] Larsen M L, Shaw R A, Kostinski A B and Glienke S 2018 Phys. Rev. Lett. 121 204501 [14] Mcfarland J A, Black W J, Dahal J and Morgan B E 2016 Phys. Fluids 28 024105 [15] Parmar M, Haselbacher A and Balachandar S 2012 J. Fluid Mech. 699 352 [16] Vorobieff P, Anderson M, Conroy J, White R, Truman C and Kumar S 2011 Phys. Rev. Lett. 106 184503 [17] Lee C B, Peng H W, Yuan H J, Wu J Z, Zhou M D and Hussain F 2011 J. Fluid Mech. 677 39 [18] Zhong H J, Lee C B, Su Z, Chen S Y, Zhou M D and Wu J Z 2013 J. Fluid Mech. 716 228 [19] Xu T, Lien F S, Ji H and Zhang F 2013 Shock Waves 23 619 [20] Boiko V M, Kiselev V P, Kiselev S P, Papyrin N A, Poplavsky S V and Fomin V M 1997 Shock Waves 7 275 [21] Kandan K, Khaderi S N, Wadley H and Deshpande V S 2017 J. Mech. Phys. Solids 109 217 [22] Zhang F, Frost D L, Thibault P A and Murray S B 2001 Shock Waves 10 431 [23] Saito T 2002 J. Comput. Phys. 176 129 [24] Saito T, Marumoto M and Takayama K 2003 Shock Waves 13 299 [25] Saurel R, Chinnayya A and Carmouze Q 2017 Phys. Fluids 29 063301 [26] Zhou Y 2017 Phys. Rep. 723 1 [27] Meng B Q, Zeng J S, Tian B L, Li L, He Z W and Guo X H 2019 Phys. Fluids 31 074102 [28] Nishihara K, Wouchuk J G, Matsuoka C, Ishizaki and Zhakhovsky V V 2010 Philos. Trans. R. Soc. A 368 1769 [29] Balakrishnan K and Menon S 2011 Laser Part. Beams 29 201 [30] Mikaelian K O 1998 Phys. Rev. Lett. 80 508 [31] Mikaelian K O 2008 Phys. Rev. E 78 015303 [32] Layzer D 1955 Astrophys. J. 122 1 [33] Goncharov V N 2002 Phys. Rev. Lett. 88 134502 [34] Zhang Q 1998 Phys. Rev. Lett. 81 3391 [35] Snider D M, ORourke P J and Andrews M J 1998 Int. J. Multiphase Flow 24 1359 [36] Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2017 Chin. Phys. Lett. 34 045201 [37] Yang X, Xiao D L, Ding N, Liu J 2017 Chin. Phys. B 26 075202 [38] Mikaelian K O 1990 Phys. Rev. A 42 7211
[1]
. [J]. 中国物理快报, 2020, 37(7): 75201-.
[2]
. [J]. 中国物理快报, 2020, 37(5): 55201-.
[3]
. [J]. 中国物理快报, 2020, 37(2): 25201-.
[4]
. [J]. 中国物理快报, 2019, 36(2): 25201-.
[5]
. [J]. 中国物理快报, 2018, 35(5): 55201-.
[6]
. [J]. 中国物理快报, 2017, 34(7): 75201-.
[7]
. [J]. 中国物理快报, 2017, 34(4): 45201-045201.
[8]
. [J]. 中国物理快报, 2014, 31(09): 95201-095201.
[9]
. [J]. 中国物理快报, 2014, 31(04): 44702-044702.
[10]
. [J]. 中国物理快报, 2014, 31(04): 45201-045201.
[11]
YE Wen-Hua;**;WANG Li-Feng;;HE Xian-Tu;
. Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability [J]. 中国物理快报, 2010, 27(12): 125203-125203.
[12]
WANG Li-Feng;YE Wen-Hua;;LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers [J]. 中国物理快报, 2010, 27(2): 25203-025203.
[13]
WANG Li-Feng;YE Wen-Hua;;LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability [J]. 中国物理快报, 2010, 27(2): 25202-025202.
[14]
WANG Li-Feng;YE Wen-Hua;;FAN Zheng-Feng;XUE Chuang;LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids [J]. 中国物理快报, 2009, 26(7): 74704-074704.