Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability
Meng Li1** , Wen-Hua Ye1,2**
1 Institute of Applied Physics and Computational Mathematics, Beijing 1000942 Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871
Abstract :The ablative Richtmyer–Meshkov instability (ARMI) is crucial to the successful ignition implosion of the inertial confinement fusion (ICF) because of its action as the seed of the Rayleigh–Taylor instability. In usual ICF implosions, the first shock driven by various foots of the pulses plays a central role in the ARMI growth. We propose a new scheme for refraining from ARMI with a pulse of successive pickets. With the successive-picket pulse design, a rippled capsule surface is compressed by three successive shocks with sequentially strengthening intensities and ablated stabilization, and the ablative Richtmyer–Meshkov growth is mitigated quite effectively. Our numerical simulations and theoretical analyses identify the validity of this scheme.
收稿日期: 2018-09-14
出版日期: 2019-01-22
:
52.57.Fg
(Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))
52.57.-z
(Laser inertial confinement)
47.20.-k
(Flow instabilities)
52.50.Lp
(Plasma production and heating by shock waves and compression)
[1] Lindl J D 1998 Inertial Confinement Fusion (Springer: New York) Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Clarendon Press) [2] Zhou Y 2017 Phys. Rep. 720 1 Zhou Y 2017 Phys. Rep. 723 1 [3] Edwards M J, Patel P K, Lindl J D et al 2013 Phys. Plasmas 20 070501 [4] Smalyuk V A, Goncharov V N, Anderson K S et al 2007 Phys. Plasmas 14 032702 [5] Ma T, Patel P K, Izumi N, Springer P T et al 2013 Phys. Rev. Lett. 111 085004 [6] Regan S P, Epstein R, Hammel B A et al 2012 Phys. Plasmas 19 056307 [7] Hurricane O A, Callahan D A, Casey D T et al 2014 Nature 506 343 [8] Gardner J H, Bodner S E and Dahlburg J P 1991 Phys. Fluids B 3 1070 [9] Velikovich A L, Cochran F L and Davis J 1996 Phys. Rev. Lett. 77 853 [10] Bodner S E, Colombant D G, Gardner J H et al 1998 Phys. Plasmas 5 1901 [11] Goncharov V N, Knauer J P, McKenty P W et al 2003 Phys. Plasmas 10 1906 [12] Anderson K and Betti R 2003 Phys. Plasmas 10 4448 [13] Betti R, Anderson K, Knauer J et al 2005 Phys. Plasmas 12 042703 [14] Campbell E M, Goncharov V N, Sangster T C et al 2017 MRE 2 37 [15] Clark D S, Milovich J L, Hinkel D E et al 2014 Phys. Plasmas 21 112705 [16] Peterson J L, Berzak Hopkins L F, Jones O S and Clark D S 2015 Phys. Rev. E 91 031101 [17] Robey H F, Smalyuk V A, Milovich J L et al 2016 Phys. Plasmas 23 056303 [18] Goncharov V N, Gotchev O V, Vianello E et al 2006 Phys. Plasmas 13 012702 [19] Peterson J L, Clark D S, Masse L P et al 2014 Phys. Plasmas 21 092710 [20] Landen O L, Baker K L, Clark D S et al 2016 J. Phys.: Conf. Ser. 717 012034 [21] He X T, Li J W, Fan Z F et al 2016 Phys. Plasmas 23 082706 [22] Wang L F, Ye W H, Wu J F et al 2016 Phys. Plasmas 23 052713 [23] Wang L F, Ye W H, Wu J F et al 2016 Phys. Plasmas 23 122702 [24] He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227 [25] Ye W H, Zhang W Y and Chen G N 1998 High Power Laser Part. Beams 10 403 (in Chinese) [26] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 57401 [27] Wang L F, Xue C, Ye W H and Li Y J 2009 Phys. Plasmas 16 112104 [28] Clark D S, Haan S W, Hammel B A et al 2010 Phys. Plasmas 17 052703 [29] Hammel B A, Haan S W, Clark D S et al 2010 High Energy Density Phys. 6 171 [30] Holmos R L, Dimonte G, Fryxell B et al 1999 J. Fluid Mech. 389 55 [31] Wouchuk J G and Cobos-Campos F 2017 Plasma Phys. Control. Fusion 59 014033 [32] MacPhee A G, Casey D T, Clark D S et al 2017 Phys. Rev. E 95 031204
[1]
. [J]. 中国物理快报, 2020, 37(7): 75201-.
[2]
. [J]. 中国物理快报, 2020, 37(5): 55201-.
[3]
. [J]. 中国物理快报, 2020, 37(2): 25201-.
[4]
. [J]. 中国物理快报, 2020, 37(1): 15201-.
[5]
. [J]. 中国物理快报, 2018, 35(5): 55201-.
[6]
. [J]. 中国物理快报, 2017, 34(7): 75201-.
[7]
. [J]. 中国物理快报, 2017, 34(4): 45201-045201.
[8]
. [J]. 中国物理快报, 2014, 31(09): 95201-095201.
[9]
. [J]. 中国物理快报, 2014, 31(04): 44702-044702.
[10]
. [J]. 中国物理快报, 2014, 31(04): 45201-045201.
[11]
YE Wen-Hua;**;WANG Li-Feng;;HE Xian-Tu;
. Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability [J]. 中国物理快报, 2010, 27(12): 125203-125203.
[12]
WANG Li-Feng;YE Wen-Hua;;LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers [J]. 中国物理快报, 2010, 27(2): 25203-025203.
[13]
WANG Li-Feng;YE Wen-Hua;;LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability [J]. 中国物理快报, 2010, 27(2): 25202-025202.
[14]
WANG Li-Feng;YE Wen-Hua;;FAN Zheng-Feng;XUE Chuang;LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids [J]. 中国物理快报, 2009, 26(7): 74704-074704.