Effective Opacity for Gold-Doped Foam Plasmas
HUANG Cheng-Wu** , SONG Tian-Ming, ZHAO Yang, ZHU Tuo, SHANG Wan-Li, XIONG Gang, ZHANG Ji-Yan, YANG Jia-Min, JIANG Shao-En
Research Center of Laser Fusion, China Academy of Engineering Physics, PO Box 919-986, Mianyang 621900
Abstract :Radiation flow through gold-doped hydrocarbon foam is investigated and a model is presented to calculate effective opacity for an inhomogeneous, pressure-equilibrated gold/foam mixture based on the Levermore–Pomraning method for binary stochastic media. The effective opacity dependance on the size of the gold particles and the foam temperature are studied. The results suggest that when the mixture temperature is lower than 250 eV, the opacity difference between the 5 μm particle mix case and the atomic mix case is large enough to induce a significant discrepancy in radiation transport, which is confirmed by the hydrodynamic simulation.
收稿日期: 2012-04-06
出版日期: 2012-10-01
:
52.57.-z
(Laser inertial confinement)
52.25.Fi
(Transport properties)
52.25.Os
(Emission, absorption, and scattering of electromagnetic radiation ?)
引用本文:
. [J]. 中国物理快报, 2012, 29(9): 95201-095201.
HUANG Cheng-Wu, SONG Tian-Ming, ZHAO Yang, ZHU Tuo, SHANG Wan-Li, XIONG Gang, ZHANG Ji-Yan, YANG Jia-Min, JIANG Shao-En. Effective Opacity for Gold-Doped Foam Plasmas. Chin. Phys. Lett., 2012, 29(9): 95201-095201.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/29/9/095201
或
https://cpl.iphy.ac.cn/CN/Y2012/V29/I9/95201
[1] Pomraning G C 1990 Laser Part. Beams 8 741 [2] Boisse P 1990 Astron. Astrophys. 228 483 [3] Peltoniemi J I 1993 J. Quant. Spectrosc. Radiat. Transf. 50 655 [4] Davis A B, Mineev-Weinstein M B 2011 J. Quant. Spectrosc. Radiat. Transf. 112 632 [5] Keiter P, Gunderson M, Foster J, Rosen P, Comley A, Taylor M and Perry T 2008 Phys. Plasmas 15 056901 [6] Rosen P A, Foster J M, Taylor M J, Keiter P A, Smith C C, Finke J R, Gunderson M and Perry T S 2007 Astrophys. Space. Sci. 307 213 [7] Levermore C D, Pomraning G C, Sanzo D L and Wong J 1986 J. Math. Phys. 27 2526 [8] Pomraning G C 1996 Adv. Nucl. Sci. Technol. 24 47 [9] Smith C C 2003 J. Quant. Spectrosc. Radiat. Transf. 81 451 [10] Vanderhaegan D 1988 J. Quant. Spectrosc. Radiat. Transf. 39 333 [11] Olson G L, Miller D S, Larsen E W and Morel J E 2006 J. Quant. Spectrosc. Radiat. Transf. 101 269
[1]
. [J]. 中国物理快报, 2020, 37(1): 15201-.
[2]
. [J]. 中国物理快报, 2019, 36(2): 25201-.
[3]
. [J]. 中国物理快报, 2015, 32(07): 75201-075201.
[4]
LI Zhi-Chao;**;ZHENG Jian;JIANG Xiao-Hua;WANG Zhe-Bin;YANG Dong;ZHANG Huan;LI San-Wei;WANG Feng;PENG Xiao-Shi;YIN Qiang;ZHU Fang-Hua;GUO Liang;YUAN Peng;LIU Shen-Ye;DING Yong-Kun
. Methods of Generation and Detailed Characterization of Millimeter-Scale Plasmas Using a Gasbag Target [J]. 中国物理快报, 2011, 28(12): 125202-125202.
[5]
ZHENG Huan;WANG An-Ting;XU Li-Xin;MING Hai. Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking [J]. 中国物理快报, 2009, 26(7): 74207-074207.
[6]
WU Zheng-Wei;ZHANG Wen-Lu;LI Ding;YANG Wei-Hong. Effect of Magnetic Field and Equilibrium Flow on Rayleigh-Taylor Instability [J]. 中国物理快报, 2004, 21(10): 2001-2004.