The Mode Matching of Hybrid Trap by Frequency Calibration
WANG Zhong-Kai, HU Dong, NIU Lin-Xiao, ZHANG Jia-Hua, CHEN Xu-Zong, ZHOU Xiao-Ji**
School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
Abstract :We demonstrate a method to precisely calibrate the relative position between an optical dipole trap and a magnetic quadrupole potential in making a Bose–Einstein condensate via the hybrid trap. We measure the displacement by the dipole oscillation in the gravity direction, where the oscillation frequency can be adjusted through an additional bias magnetic field. One frequency corresponds to the case of the mode matching while two frequencies are not, and the great consistency between theoretical simulation and experimental results indicates its usefulness.
收稿日期: 2014-11-22
出版日期: 2015-06-01
[1] Kinoshita T, Wenger T and Weiss D S 2005 Phys. Rev. A 71 011602 [2] Clément J F, Brantut J P, Robert-de-Saint-Vincent M, Nyman R A, Aspect A, Bourdel T and Bouyer P 2009 Phys. Rev. A 79 061406 [3] Arnold K J and Barrett M D 2011 Opt. Commun. 284 3288 [4] Barett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404 [5] Weber T, Herbig J, Mark M, Nagerl H C and Grimm R 2003 Science 299 232 [6] Esslinger T, Bloch I and Hansch T W 1998 Phys. Rev. A 58 R2664 [7] Zhou X J, Yang F, Yue X G, Vogt T and Chen X Z 2010 Phys. Rev. A 81 013615 [8] Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631 [9] Dubessy R, Merloti K, Longchambon L, Pottie P E, Liennard T, Perrin A, Lorent V and Perrin H 2012 Phys. Rev. A 85 013643 [10] Hung C L, Zhang X, Gemelke N and Chin C 2008 Phys. Rev. A 78 011604 [11] Hartwig J, Schlippert D, Velte U, Winter N, Lebeder V, Ertmer W and Rasel E M 2011 Phys. Rev. A 83 035601 [12] Comparat D, Fioretti A, Stern G, Dimova E, Laburthe Tolra B and Pillet P 2006 Phys. Rev. A 73 043410 [13] Myatt C J, Newbury N R, Ghrist R W, Loutzenhiser S and Wieman C E 1996 Opt. Lett. 21 290 [14] Friebel S, D'Andrea C, Walz J, Weitz M and H?nsch T W 1998 Phys. Rev. A 57 R20 [15] Cennini G, Ritt G, Geckeler C and Weitz M 2003 Appl. Phys. B 77 773 [16] Chaudhuri S, Roy S and Unnikrishnan C S 2007 J. Phys.: Conf. Ser. 80 012036
[1]
. [J]. 中国物理快报, 2021, 38(6): 64202-.
[2]
ZHANG Yi-Zhuo;WANG Da-Yong;**;WANG Yun-Xin;TAO Shi-Quan
. Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging [J]. 中国物理快报, 2011, 28(11): 114209-114209.
[3]
LIU Shi-Yuan;**;LIU Wei;WU Xiao-Fei
. Fast Evaluation of Aberration-Induced Intensity Distribution in Partially Coherent Imaging Systems by Cross Triple Correlation [J]. 中国物理快报, 2011, 28(10): 104212-104212.
[4]
REN Zhi-Jun;LIANG Xiao-Yan;LIU Mei-Biao;XIA Chang-Quan;LU Xiao-Ming;LI Ru-Xin;XU Zhi-Zhan. Wavefront Correction of Pettawat Laser System by a Deformable Mirror with 50mm Active Aperture [J]. 中国物理快报, 2009, 26(12): 124203-124203.
[5]
ZHAO Hao-Xin;XU Bing;LI Jing;DAI Yun;YU Xiang;ZHANG Yu-Dong;JIANG Wen-Han. Effects of Different Zernike Terms on Optical Quality and Vision of Human Eyes [J]. 中国物理快报, 2009, 26(5): 54205-054205.
[6]
CHEN Zi-Yang;PU Ji-Xiong. Effect of Coma Aberration on Orbital Angular Momentum Spectrum of Vortex Beams [J]. 中国物理快报, 2009, 26(3): 34202-034202.
[7]
ZHAO Hao-Xin;XU Bing;XUE Li-Xia;DAI Yun;LIU Qian;RAO Xue-Jun. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes [J]. 中国物理快报, 2008, 25(4): 1309-1312.
[8]
HOU Jing;XIAO Rui. Phase-Locked Fibre Array for Coherent Combination and Atmosphere Aberration Compensation [J]. 中国物理快报, 2006, 23(12): 3288-3290.
[9]
YANG Qing-Guo;SUN Jian-Feng;LIU Li-Ren. Phase-Space Analysis of Wavefront Coding Imaging Systems [J]. 中国物理快报, 2006, 23(8): 2080-2083.
[10]
YAO Xin-Cheng;LI Zhao-Lin; GUO Hong-Lian;CHENG Bing-Ying;ZHANG Dao-Zhong. Effects of Spherical Aberration on Optical Trapping Forces for
Rayleigh Particles [J]. 中国物理快报, 2001, 18(3): 432-434.