Arbitrary Partially Entangled Three-Electron W State Concentration with Controlled-Not Gates
SHENG Yu-Bo1** , FENG Zhao-Feng1 , OU-YANG Yang1 , QU Chang-Cheng1 , ZHOU Lan1,2
1 Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 2100032 College of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003
Abstract :We describe an efficient entanglement concentration protocol (ECP) for an arbitrary partially entangled three-electron W state. We show that with the help of two ancillary single electrons, the concentration task can be well completed. This ECP has several advantages: Firstly, we only require one pair of partially entangled states. Secondly, only two single electrons are used during the whole protocol. Thirdly, we do not require all the parties to participate in the whole process, and only two parties are needed to perform the operation. Fourthly, the protocol can be repeated to obtain a high success probability. This ECP may be useful in current quantum computation and quantum communication.
出版日期: 2014-04-24
:
03.67.Pp
(Quantum error correction and other methods for protection against decoherence)
03.67.Hk
(Quantum communication)
03.65.Ud
(Entanglement and quantum nonlocality)
[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [2] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394 [3] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338 [4] Ekert A K 1991 Phys. Rev. Lett. 67 661 [5] Deng F G and Long G L 2003 Phys. Rev. A 68 042315 [6] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [7] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 [8] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305 [9] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309 [10] Hillery M, Bu?ek V and Berthiaume A 1999 Phys. Rev. A 59 1829 [11] Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690 [12] Gu B, Mu L L, Ding L G, Zhang C Y, and Li C Q 2010 Opt. Commun. 283 3099 [13] Knill E, Laflamme R and Miburn G J 2001 Nature 409 46 [14] Feng G, Xu G and Long G 2013 Phys. Rev. Lett. 110 190501 [15] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 [16] Pan J W, Simon C and Zellinger A 2001 Nature 410 1067 [17] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901 [18] Sheng Y B, Deng, F G and Zhou H Y 2008 Phys. Rev. A 77 042308 [19] Wang C, Sheng Y B, Li X H, Deng F G and Long G L 2009 Sci. Chin. E 52 3464 [20] Gu B, Chen Y L, Zhang C Y and Huang Y G 2010 Chin. Phys. Lett. 27 100304 [21] Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301 [22] Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396 [23] Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quantum Inf. Process. 12 855 [24] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307 [25] Deng F G 2011 Phys. Rev. A 83 062316 [26] Deng F G 2011 Phys. Rev. A 84 052312 [27] Bennett C H, Bernstein H J, Popesue S and Schumacher B 1996 Phys. Rev. A 53 2046 [28] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194 [29] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301 [30] Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159 [31] Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quantum Inf. Process. 11 431 [32] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325 [33] Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305 [34] Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069 [35] Li X H Chen X and Zeng Z 2013 J. Opt. Soc. Am. B 30 2774 [36] Sheng Y B and Zhou L 2013 Entropy 15 1776 [37] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301 [38] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307 [39] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302 [40] Deng F G 2012 Phys. Rev. A 85 022311 [41] Gu B 2012 J. Opt. Soc. Am. B 29 1685 [42] Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399 [43] Zhou L 2013 Quantum Inf. Process. 12 2087 [44] Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307 [45] Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303 [46] Wang C 2012 Phys. Rev. A 86 012323 [47] He L Y, Cao C and Wang C 2013 Opt. Commun. 298-299 260 [48] Cao C, Wang C, He L Y and Zhang R 2013 Opt. Express 21 4093 [49] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[1]
. [J]. 中国物理快报, 2023, 40(1): 10301-.
[2]
. [J]. 中国物理快报, 2019, 36(3): 30301-.
[3]
. [J]. 中国物理快报, 2017, 34(3): 30302-030302.
[4]
. [J]. 中国物理快报, 2016, 33(01): 10301-010301.
[5]
. [J]. 中国物理快报, 2013, 30(7): 77302-077302.
[6]
. [J]. Chin. Phys. Lett., 2012, 29(11): 110301-110301.
[7]
. [J]. 中国物理快报, 2012, 29(9): 90304-090304.
[8]
XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect [J]. 中国物理快报, 2012, 29(5): 50304-050304.
[9]
LI Chun-Yan;;LI Yan-Song;**
. Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime [J]. 中国物理快报, 2011, 28(12): 120306-120306.
[10]
ZHANG Ai-Ping**;QIANG Wen-Chao;LING Ya-Wen;XIN Hong;YANG Yong-Ming
. Geometric Phase for a Qutrit-Qubit Mixed-Spin System [J]. 中国物理快报, 2011, 28(8): 80301-080301.
[11]
ZHANG Ji-Ying;ZHOU Zheng-Wei**;GUO Guang-Can
. Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State [J]. 中国物理快报, 2011, 28(5): 50301-050301.
[12]
LI Chun-Yan;LI Yan-Song**
. Fault-Tolerate Three-Party Quantum Secret Sharing over a Collective-Noise Channel [J]. 中国物理快报, 2011, 28(2): 20304-020304.
[13]
GU Bin;CHEN Yu-Lin;ZHANG Cheng-Yi;HUANG Yu-Gai. Efficient Polarization Entanglement Purification Using Spatial Entanglement [J]. 中国物理快报, 2010, 27(10): 100304-100304.
[14]
JIANG Feng-Jian;SHI Ming-Jun;CHONG Bo;DU Jiang-Feng. Error Tolerance in Constructing Cluster States [J]. 中国物理快报, 2010, 27(8): 80303-080303.
[15]
ZHOU Jian;YANG Ming;LU Yan;CAO Zhuo-Liang;. Nearly Deterministic Teleportation of a Photonic Qubit with Weak Cross-Kerr Nonlinearities [J]. 中国物理快报, 2009, 26(10): 100301-100301.