Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
LI Chun-Yan1,2,3, LI Yan-Song1,2**
1State Key Laboratory of Low-dimensional Quantum Physics, and Department of Physics, Tsinghua University, Beijing 100084 2Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 3Department of Physics, National University of Defense Technology, Changsha 410073
Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
LI Chun-Yan1,2,3, LI Yan-Song1,2**
1State Key Laboratory of Low-dimensional Quantum Physics, and Department of Physics, Tsinghua University, Beijing 100084 2Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 3Department of Physics, National University of Defense Technology, Changsha 410073
摘要We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement statesof photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed.
Abstract:We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement statesof photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed.
(Quantum error correction and other methods for protection against decoherence)
引用本文:
LI Chun-Yan;;LI Yan-Song;**
. Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime[J]. 中国物理快报, 2011, 28(12): 120306-120306.
LI Chun-Yan, , LI Yan-Song, **
. Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime. Chin. Phys. Lett., 2011, 28(12): 120306-120306.
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod Phys. 74 145
[3] Bennett C H and Brassard G 1984 In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India December 1984) p 175
[4] Lo H K and Chau H F 1999 Science 283 2050
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[7] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[8] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[9] Deng F G and Long G L 2004 Phys. Rev. A 70 012311
[10] Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133
[11] Wang C, Zhang J F et al 2005 Sci. Chin. G Phys. Mech. Astron. 48 237
[12] Sun S H, Gao M et al 2008 Chin. Phys. Lett. 25 2358
[13] Li J L and Wang C 2010 Chin. Phys. Lett. 27 110303
[14] Cabello A 2000 Phys. Rev. Lett. 85 5635
[15] Zhang Y S and Li C F and Guo G C 2001 Phys. Rev. A 64 024302
[16] Li C Y, Li X H et al 2007 Chin. Sci. Bull. 52 1162
[17] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
[18] Garnier A A et al 2007 Phys. Rev. A 75 053823
[19] Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[20] Hu C Y et al 2009 Phys. Rev. B 80 205326
[21] Hu C Y and Rarity J G 2011 Phys. Rev. B 83 115303
[22] Wang C et al 2011 Phys. Rev. A 84 032307
[23] Bonato C et al 2010 Phys. Rev. Lett. 104 160503
[24] Gisin N et al 2002 Rev. Mod. Phys. 74 145
[25] Cai Q Y 2006 Phys. Lett. A 351 23
[26] Deng F G et al 2006 Chin. Phys. Lett. 23 1084
[27] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[28] Li C Y et al 2005 Chin. Phys. Lett. 22 1049
[29] Li X H et al 2006 Phys. Rev. A 74 054302
[30] Li C Y et al 2006 Chin. Phys. Lett. 23 2896
[31] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[32] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[33] Achilles D et al 2004 J. Mod. Optics 51 1499
[34] Achilles D et al 2003 Opt. Lett. 28 2387
[35] Cabello C 2000 Phys. Rev. Lett. 85 5635
[36] Berezovsky J et al 2008 Science 320 349
[37] Clark S M et al 2009 Phys. Rev. Lett. 102 247601
[38] Xu X, Yao W et al 2009 Nature 459 1105
[39] Reithmaier J P et al 2004 Nature 432 197
[40] Yoshie T et al 2004 Nature 432 200
[41] Abe E et al 2011 Appl. Phys. Lett. 98 251108
[42] Reitzenstein S et al 2007 Appl. Phys. Lett. 90 251109
[43] Berezovsky J et al 2008 Science 320 349
[44] Greilich A et al 2009 Nat. Phys. 5 262