Practical Quantum Private Query with Classical Participants
Min Xiao1, Di-Fang Zhang2**
1Institute of Computer Forensics, Chongqing University of Posts and Telecommunications, Chongqing 400065 2College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065
Abstract:Quantum key distribution (QKD)-based quantum private query (QPQ) is a practical application of QKD, which relaxes the security condition of perfectly concealing a private query to a cheating-sensitive strategy. We propose a QPQ protocol based on the delegated QKD scheme (DQKD-based QPQ), in which two almost 'classical' clients (data user and database owner) can establish a 1-out-of-N oblivious key with the help of a cloud server with full quantum ability. Concretely, the two classical participants in the DQKD-based QPQ only need to access the quantum channel and reorder qubits, and the costly quantum operations, quantum state preparation and measurement are outsourced to a full quantum server in the cloud without leaking participants' privacy. The proposed protocol not only provides a cloud-based framework of QKD-based QPQ, but also obtains better security by a real-time security check, which can protect the security of the database and user against all potential attacks even if the quantum server is assumed to be a powerfully untrusted adversary.