Electronic States of IC60 BA and PC71 BM
SHENG Chun-Qi1,3 , WANG Peng1 , SHEN Ying1 , LI Wen-Jie1 , ZHANG Wen-Hua2 , ZHU Jun-Fa2 , LAI Guo-Qiao3 , LI Hong-Nian1**
1 Department of Physics, Zhejiang University, Hangzhou 3100272 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 2300293 Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012
Abstract :We investigate the electronic states of IC60 BA and PC71 BM using first-principles calculations and photoelectron spectroscopy (PES) measurements. The energy level structures for all possible isomers are reported and compared with those of C60 , C70 and PC61 BM. The attachment of the side chains can raise the LUMO energies and decrease the HOMO-LUMO gaps, and thus helps to increase the power-conversion efficiency of bulk heterojunction solar cells. In the PES studies, we prepared IC60 BA and PC71 BM films on Si:H(111) substrates to construct adsorbate/substrate interfaces describable with the integer charge-transfer (ICT) model. Successful measurements then revealed that one of the most important material properties for an electron acceptor, the energy of the negative integer charge-transfer state (E ICT? ), is 4.31 eV below the vacuum level for PC71 BM. The E ICT? of IC60 BA is smaller than 4.14 eV.
收稿日期: 2013-05-09
出版日期: 2013-11-30
:
71.20.Tx
(Fullerenes and related materials; intercalation compounds)
73.30.+y
(Surface double layers, Schottky barriers, and work functions)
79.60.Dp
(Adsorbed layers and thin films)
31.15.A-
(Ab initio calculations)
引用本文:
. [J]. 中国物理快报, 2013, 30(11): 117103-117103.
SHENG Chun-Qi, WANG Peng, SHEN Ying, LI Wen-Jie, ZHANG Wen-Hua, ZHU Jun-Fa, LAI Guo-Qiao, LI Hong-Nian. Electronic States of IC60 BA and PC71 BM. Chin. Phys. Lett., 2013, 30(11): 117103-117103.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/30/11/117103
或
https://cpl.iphy.ac.cn/CN/Y2013/V30/I11/117103
[1] Hummelen L C, Knight B W, Lepeq F, Wudl F, Yao J and Wilkins C L 1995 J. Org. Chem. 60 532 [2] Zhao G J, He Y J and Li Y F 2010 Adv. Mater. 22 4355 [3] He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J and Cao Y 2011 Adv. Mater. 23 4636 [4] Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G and Yang Y 2012 Nat. Photon. 6 180 [5] Wienk M M, Kroon J M, Verhees W J H, Knol J, Hummelen J C, Hal P A van and Janssen R A J 2003 Angew. Chem. Int. Ed. 42 3371 [6] He Y J, Chen H Y, Hou J H and Li Y F 2010 J. Am. Chem. Soc. 132 1377 [7] Lof R W, Veenendaal M A van, Koopmans B and Sawatzky G A 1992 Phys. Rev. Lett. 68 3924 [8] Knupfer M, Poirier D M and Weaver J H 1994 Phys. Rev. B 49 2281 [9] Dresselhaus M S, Dresselhaus G and Eklund P C 1996 Science of Fullerenes and Carbon Nanotubes (New York: Academic) [10] Olthof S, Meerheim R, Schober M and Leo K 2009 Phys. Rev. B 79 245308 [11] Tengstedt C, Osikowicz W, Salaneck W R, Parker I D, Hsu C H and Fahlman M 2006 Appl. Phys. Lett. 88 053502 [12] Osikowicz W, Jong M P de and Salaneck W R 2007 Adv. Mater. 19 4213 [13] Xu Z, Chen L M, Chen M H, Li G and Yang Y 2009 Appl. Phys. Lett. 95 013301 [14] Braun S, Salaneck W R and Fahlman M 2009 Adv. Mater. 21 1450 [15] Guan Z L, Kim J B, Loo Y L and Kahn A 2011 J. Appl. Phys. 110 043719 [16] Ratcliff E L, Meyer J and Steirer K X, Armstrong N R, Olson D and Kahn A 2012 Org. Electron. 13 744 [17] Delley B 1990 J. Chem. Phys. 92 508 [18] Delley B 2000 J. Chem. Phys. 113 7756 [19] Becke A D 1988 J. Chem. Phys. 88 1053 [20] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785 [21] Hirsch A, Lamparth I and Karfunkel H R 1994 Angew. Chem. Int. Ed. 33 437 [22] Lu Q, Schuster D I and Wilson S R 1996 J. Org. Chem. 61 4764 [23] Mas-Torrent M, Rodrguez-Mias R A, Solà M, Molins M A, Pons M, Vidal-Gancedo J, Veciana J and Rovira C 2002 J. Org. Chem. 67 566 [24] Li H N, Wang X X, He S L, Zhang H J, Li H Y and Bao S N 2004 Chin. Phys. 13 1941 [25] Sheng C Q, Wang P, Shen Y, Li Y J, Zhang W H, Xu F Q, Zhu J F, Lai G Q and Li H N 2012 Chin. Phys. B 21 017102 [26] Nelson J 2011 Mater. Today 14 462 [27] Gao C, Qu B, Chen D, Cong Z Y, Liu J Q, Chen J, An Z W, Chen Z J, Xiao L X, Wei W and Gong Q H 2012 React. Funct. Polym. 72 122 [28] N ápoles-Duarte J M, Reyes-Reyes M, Ricardo-Chavez J L, Garibay-Alonso R and López-Sandoval R 2008 Phys. Rev. B 78 035425 [29] écija D, Otero R, S ánchez L, Gallego J M, Wang Y, Alcamí M, Martín F, Martín N and Miranda R 2007 Angew. Chem. Int. Ed. 46 7874 [30] Wang Y, Alcamí M and Martín F 2008 ChemPhysChem 9 1030 [31] Wang P, Ni J F, Meng L, Wang X B, Sheng C Q, Zhang W H, Xu Y, Xu F Q, Zhu J F and Li H N 2012 Carbon 50 1762
[1]
LI Ji-Ling;YANG Guo-Wei;ZHAO Ming-Wen;LIU Xiang-Dong;XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption [J]. 中国物理快报, 2010, 27(9): 97101-097101.
[2]
M. D. Ganji;H. Yazdani. Interaction between B-Doped C60 Fullerene and Glycine Amino Acid from First-Principles Simulation [J]. 中国物理快报, 2010, 27(4): 43102-043102.
[3]
WANG Zhao-Na;LIU Da-He. Narrow Band Longitude Mode Selector of Laser Based on Conjugated Photonic Crystals [J]. 中国物理快报, 2009, 26(10): 104204-104204.
[4]
TANG Chun-Mei;ZHU Wei-Hua;DENG Kai-Ming. Can the Fullerene C80 Encage the Tetrahedral Td -N4 ? A Density Functional Study [J]. 中国物理快报, 2009, 26(9): 96101-096101.
[5]
WEN Yan-Wei;LIU Hui-Jun;PAN Lu;TAN Xiao-Jian;SHI Jing. First-Principles Study of Li Doping in a Double-Wall Carbon Nanotube [J]. 中国物理快报, 2009, 26(8): 87102-087102.
[6]
ZHAI Tian-Rui;REN Zhi;ZHAO Rong-Kuo;WANG Zhao-Na;WANG Li-Feng;ZHOU Jing;LIU Da-He. Doping Defects in Two-Dimensional Holographic Photonic Crystals Using a Continuous-Wave Visible Laser [J]. 中国物理快报, 2009, 26(5): 54201-054201.
[7]
WANG Xiao-Xiong;LI Hong-Nian;XU Ya-Bo;WANG;ZHANG Wen-Hua;XU Fa-Qiang. Electronic Structure of Eu6 C60 [J]. 中国物理快报, 2009, 26(1): 17104-017104.
[8]
LI Ji-Ling;XIA Yue-Yuan;ZHAO Ming-Wen;LIU Xiang-Dong;SONG Chen;LI Li-Juan;LI Feng;HUANG Bo-Da. Polymerization of Silicon-Doped Heterofullerenes: an Ab Initio Study [J]. 中国物理快报, 2008, 25(1): 246-249.
[9]
XIAO Yang;YAN Xiao-Hong;DING Jian-Wen. Codoping of Potassium and Bromine in Carbon Nanotubes: A Density Functional Theory Study [J]. 中国物理快报, 2007, 24(12): 3506-3508.
[10]
DING Jian-Wen;YAN Xiao-Hong;LIU Chao-Ping;TANG Na-Si. Strain Induced Insulator-Metal Transition in Single Wall Carbon Nanotubes [J]. 中国物理快报, 2004, 21(4): 704-706.
[11]
LI Hong-Nian;WU Tai-Quan;CHEN Xiao;LI Hai-Yang;BAO Shi-Ning;XU Ya-Bo;QIAN Hai-Jie;Ibrahim KURASH;LIU Feng-Qin. Preparation and Photoemission Spectra of Rb3 C60 Single Crystal Thin Film [J]. 中国物理快报, 2002, 19(6): 839-842.
[12]
YANG Hua-Tong;DONG Jin-Ming;XING Ding-Yu. Electronic Localization Length of Carbon Nanotubes with Different Chiral Symmetries [J]. 中国物理快报, 2001, 18(8): 1105-1107.
[13]
CAO Xue-Wei;SHAO Yue;WANG Yu-Fang;LAN Guo-Xiang. X-Ray Photoelectron Spectrum Analysis of Yb3 C60 Compound
[J]. 中国物理快报, 2001, 18(5): 656-658.