Polymerization of Silicon-Doped Heterofullerenes: an Ab Initio Study
LI Ji-Ling1, XIA Yue-Yuan1, ZHAO Ming-Wen1, LIU Xiang-Dong1, SONG Chen1, LI Li-Juan1, LI Feng2, HUANG Bo-Da3
1School of Physics and Microelectronics, Shandong University, Jinan 2501002Department of Physics, Taishan University, Tai'an 2710213School of Information Science and Engineering, Shandong University, Jinan 250100
Polymerization of Silicon-Doped Heterofullerenes: an Ab Initio Study
LI Ji-Ling1;XIA Yue-Yuan1;ZHAO Ming-Wen1;LIU Xiang-Dong1;SONG Chen1;LI Li-Juan1;LI Feng2;HUANG Bo-Da3
1School of Physics and Microelectronics, Shandong University, Jinan 2501002Department of Physics, Taishan University, Tai'an 2710213School of Information Science and Engineering, Shandong University, Jinan 250100
摘要We perform the calculations on geometric and electronic structures of Si-doped heterofullerene C50Si10 and its derivatives, a C40Si20-C40Si20 dimer and a C40Si20-based nanowire by using density-functional theory. The optimized configuration of the C40Si20-based nanowire exhibits a regular dumbbell-shaped chain nanostructure. The electronic structure calculations indicate that the HOMO--LUMO gaps of the heterofullerene-based materials can be greatly modified by substitutionally doping with Si atoms and show a decreasing trend with increase cluster size. Unlike the band structures of the conventional wide band gap silicon carbide nanomaterials, the C40Si20-based nanowire has a very narrow direct band gap of 0.087eV.
Abstract:We perform the calculations on geometric and electronic structures of Si-doped heterofullerene C50Si10 and its derivatives, a C40Si20-C40Si20 dimer and a C40Si20-based nanowire by using density-functional theory. The optimized configuration of the C40Si20-based nanowire exhibits a regular dumbbell-shaped chain nanostructure. The electronic structure calculations indicate that the HOMO--LUMO gaps of the heterofullerene-based materials can be greatly modified by substitutionally doping with Si atoms and show a decreasing trend with increase cluster size. Unlike the band structures of the conventional wide band gap silicon carbide nanomaterials, the C40Si20-based nanowire has a very narrow direct band gap of 0.087eV.
LI Ji-Ling;XIA Yue-Yuan;ZHAO Ming-Wen;LIU Xiang-Dong;SONG Chen;LI Li-Juan;LI Feng;HUANG Bo-Da. Polymerization of Silicon-Doped Heterofullerenes: an Ab Initio Study[J]. 中国物理快报, 2008, 25(1): 246-249.
LI Ji-Ling, XIA Yue-Yuan, ZHAO Ming-Wen, LIU Xiang-Dong, SONG Chen, LI Li-Juan, LI Feng, HUANG Bo-Da. Polymerization of Silicon-Doped Heterofullerenes: an Ab Initio Study. Chin. Phys. Lett., 2008, 25(1): 246-249.
[1] Fye J L and Jarrold M F 1997 J. Phys. Chem. 101 1836 [2] Ray C et al 1998 Phys. Rev. Lett. 80 5365 [3] Pellarin M et al 1999 J. Chem. Phys. 110 14 [4] Fu C C et al 2001 Phys.Rev. B 63 085411 [5] Matsubara M and Massobrio C 2005 J. Phys. Chem. A 109 4415 [6] Rao A M et al 1993 Science 259 955 [7] Onoe J et al 1999 Chem .Phys. Lett. 315 19 [8] Bandow S et al 2001 Chem.Phys. Lett. 337 48 [9] Onoe J et al 2003 Appl. Phys. Lett. 82 595 [10] Wang G, Li Y X and Huang Y H 2005 J. Phys. Chem. B 109 10957 [11] Tsukamoto S and Nakayama T 2005 J. Chem. Phys. 122 074702 [12] Beu T A, Onoe J and Hida A 2005 Phys. Rev. B 72 155416 [13] Li J L et al (to be published) [14] Ordej\'{on P, Artacho E and Soler J M 1996 Phys.Rev. B 53 R10441 [15] Portal D S et al 1997 Int. J. Quantum Chem. 65 453 [16] Soler J M et al 2002 J. Phys.: Condens. Matter 14 2745 [17] Troullier N and Martins J L 1991 Phys. Rev. B.43 1993 [18] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425 [19] Bylander D M and Kleinman L 1990 Phys. Rev. B. 41 907 [20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev.Lett. 77 3865 [21] Junquera J et al 2001 Phys. Rev. B 64 235111 [22] Monkhorst H J and Pack J D 1976 Phys. Rev. B. 13 5188 [23] Li L, Reich S and Robertson J 2005 Phys. Rev. B 72 184109 [24]Tsukamoto S and Nakayama T 2005 J. Chem. Phys. 122 074702 [25] Saito S and Oshiyama A 1991 Phys. Rev. Lett. 66 2637 [26] Zhao M W et al 2005 Phys. Rev. B 71 085312