Lensless Ghost Diffraction with Partially Coherent Sources: Effects of the Source Size, Transverse Coherence, Detector Size and Defocusing Length
LIN Jie1,2**, CHENG Jing3
1School of Electronics and Information Engineering, South China University of Technology, Guangzhou 510641 2School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 3Department of Physics, South China University of Technology, Guangzhou 510641
Lensless Ghost Diffraction with Partially Coherent Sources: Effects of the Source Size, Transverse Coherence, Detector Size and Defocusing Length
LIN Jie1,2**, CHENG Jing3
1School of Electronics and Information Engineering, South China University of Technology, Guangzhou 510641 2School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 3Department of Physics, South China University of Technology, Guangzhou 510641
摘要Lensless ghost diffraction with partially coherent sources is investigated theoretically and numerically. Based on the classical optical coherent theory and the Gauss–Shell model of the partially coherent sources, we derive an analytical imaging formula of lensless ghost diffraction (LGD). Using this formula, we can see the effects of the transverse size and coherence of the sources, the detector size and defocusing length on the quality of LGD. Numerical results are presented to show that for different detector sizes and defocusing lengths, high quality LGD can be realized by using sources with appropriate transverse sizes and coherent widths. These findings can be used to choose the optimal parameters in the design of a realistic LGD system.
Abstract:Lensless ghost diffraction with partially coherent sources is investigated theoretically and numerically. Based on the classical optical coherent theory and the Gauss–Shell model of the partially coherent sources, we derive an analytical imaging formula of lensless ghost diffraction (LGD). Using this formula, we can see the effects of the transverse size and coherence of the sources, the detector size and defocusing length on the quality of LGD. Numerical results are presented to show that for different detector sizes and defocusing lengths, high quality LGD can be realized by using sources with appropriate transverse sizes and coherent widths. These findings can be used to choose the optimal parameters in the design of a realistic LGD system.
[1] Pittman T B, Shih Y H, Strekalov D V et al 1995 Phys. Rev. A 52 3429
[2] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. Lett. 74 3600
[3] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[4] Bennink R S, Bentley S J, Boyd R W et al 2004 Phys. Rev. Lett. 92 033601
[5] Gatti A, Brambilla E and Lugiato L A 2003 Phys. Rev. Lett. 90 133603
[6] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
[7] Howell J C, Bennink R S, Bentley S J et al 2004 Phys. Rev. Lett. 92 210403
[8] D'Angelo M et al 2004 Phys. Rev. Lett. 92 233601
[9] Gatti A et al 2004 Phys. Rev. Lett. 93 093602
[10] Valencia A et al 2005 Phys. Rev. Lett. 94 063601
[11] Zhai Y H et al 2005 Phys. Rev. A 72 043805
[12] Zhang D et al 2005 Opt. Lett. 30 2354
[13] Cai Y J and Zhu S Y 2005 Phys. Rev. E 71 056607
[14] Cheng J and Han S S 2007 Phys. Rev. A 76 023824
[15] Wang L G, Qamar S, Zhu S Y et al 2009 Phys. Rev. A 79 033835
[16] Gatti A et al 2006 J. Mod. Opt. 53 739
[17] Zhang M H et al 2007 Phys. Rev. A 75 021803
[18] Basano L, Ottonello P 2006 Appl. Phys. Lett. 89 091109
[19] Cheng J 2008 Phys. Rev. A 78 043823
[20] Cai Y J et al 2009 Opt. Express 17 2453
[21] Gong W, Zhang P et al 2009 Appl. Phys. Lett. 95 071110
[22] Chen X H et al 2009 Opt. Lett. 34 695
[23] Li C et al 2010 Appl. Phys. B 99 599
[24] Basano L and Ottonello P 2010 Opt. Commun. 283 2657
[25] Ying G, Wei Q, Shen X and Han S S 2008 Opt. Commun. 281 5130
[26] Li H G, Zhang Y T, Cao D Z, Xiong J et al 2008 Chin. Phys. B 17 1674
[27] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[28] Goodman J W 2006 Introduction to Fourier Optics (Beijng: Publishing House of Electronics Industry)
[29] Lin J and Cheng J 2010 Acta Opt. Sin. 30 2912 (in Chinese)
[30] Hu F M, Wang X R, Zhang J Q et al 2005 Infrared Technol. 27 129