1College of Electronic Science and Engineering, Jilin University, Changchun 130012 2College of Communication Engineering, Jilin University, Changchun 130012
Characteristics of Soliton Evolution in the Wave-Breaking-Free Regime in a Passively Mode-Locked Yb-Doped Fiber Laser
1College of Electronic Science and Engineering, Jilin University, Changchun 130012 2College of Communication Engineering, Jilin University, Changchun 130012
摘要We focus on several aspects concerning the numerical simulation of a passively mode-locked Yb-doped fiber laser by a non-distributed model. The characteristics of soliton evolution in a wave-breaking-free regime are numerically investigated with the split-step Fourier method. Based on the model, a parabolic-shaped soliton with a nearly linear chirp and bound soliton pairs are obtained by controlling the intra-cavity average dispersion of the fiber laser. A phenomenon is observed that by keeping the system parameters unchanged, linearly chirped parabolic soliton and bound soliton pairs are attainable under different initial conditions in the transient region between these two kinds of solitons.
Abstract:We focus on several aspects concerning the numerical simulation of a passively mode-locked Yb-doped fiber laser by a non-distributed model. The characteristics of soliton evolution in a wave-breaking-free regime are numerically investigated with the split-step Fourier method. Based on the model, a parabolic-shaped soliton with a nearly linear chirp and bound soliton pairs are obtained by controlling the intra-cavity average dispersion of the fiber laser. A phenomenon is observed that by keeping the system parameters unchanged, linearly chirped parabolic soliton and bound soliton pairs are attainable under different initial conditions in the transient region between these two kinds of solitons.
[1] Ortaç B et al 2010 Appl. Phys. B: Lasers Opt. 98 27
[2] Liu X M and Mao D 2010 Opt. Express 18 8847
[3] Lhermite J et al 2010 Opt. Lett. 35 3459
[4] Chong A et al 2008 J. Opt. Soc. Am. B 25 140
[5] Liu X M et al 2009 Opt. Express 17 8506
[6] Ruehl A et al 2008 Opt. Express 16 8181
[7] Ouyang C M et al 2010 Optik 121 317
[8] Ilday F Ö et al 2004 Phys. Rev. Lett. 92 213902
[9] Nielsen C K et al 2005 Opt. Express 13 9346
[10] Ruehl A et al 2008 Opt. Express 16 3130
[11] Ortaç B et al 2006 Opt. Express 14 6075
[12] Nelson L E et al 1997 Appl. Phys. B: Lasers Opt. 65 277
[13] Zhang H et al 2009 Phys. Rev. A 80 045803
[14] Anderson D et al 1993 Appl. Opt. 32 1185
[15] Ilday F Ö et al 2003 Opt. Lett. 28 1365
[16] Liu X M 2010 Phys. Rev. A 82 053808
[17] Martel G et al 2007 Opt. Lett. 32 343
[18] Zhao L M et al 2010 Appl. Phys. B: Lasers Opt. 99 441
[19] Zhao L M et al 2007 Appl. Opt. 46 4768
[20] Farnum E D et al 2006 J. Opt. Soc. Am. B 23 257
[21] Zhang H et al 2010 Opt. Express 17 17630
[22] Zhang H et al 2010 Appl. Phys. Lett. 96 111112
[23] Hideur A et al 2003 Opt. Commun. 225 71
[24] Mao D et al 2011 Laser Phys. Lett. 8 134