摘要We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that the mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ→0.
Abstract:We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that the mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ→0.
M Sharif**;G Abbas
. Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. 中国物理快报, 2011, 28(9): 90402-090402.
M Sharif**, G Abbas
. Phantom Accretion onto the Schwarzschild de-Sitter Black Hole. Chin. Phys. Lett., 2011, 28(9): 90402-090402.
[1] Perlmutter S et al 1997 Astrophys. J. 483 565
[2] Perlmutter S et al 1998 Nature 391 51
[3] Perlmutter S et al 1999 Astrophys. J. 517 565
[4] Riess A G et al 1998 Astron. J. 116 1009
[5] Bennett C L et al 2003 Astrophys. J. Suppl. 148 1
[6] Spergel D N et al 2003 Astrophys. J. Suppl. 148 175
[7] Verde L et al 2002 Mon. Not. R. Astron. Soc. 335 432
[8] Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 9 373
[9] Caldwell R R 2002 Phys. Lett. B 23 545
[10] Sen A J 2002 High Energy Phys. 48 204
[11] Wang B, Gong Y G and Abdalla E 2005 Phys. Lett. B 624 141
[12] Li M 2004 Phys. Lett. B 603 1
[13] Frieman J A et al 1995 Phys. Rev. Lett. 75 2077
[14] Coble K, Dodelson S and Frieman J A 1997 Phys. Rev. D 55 1851
[15] Hinshaw G et al 2009 Astrophys. J. Suppl. 180 225
[16] Bondi H 1952 Mon. Not. Roy. Astron. Soc. 112 195
[17] Michel F C 1972 Astrophys. Space Sci. 15 153
[18] Babichev E, Dokuchaev V and Eroshenko Y 2004 Phys. Rev. Lett. 93 021102
[19] Jamil M, Rashid M and Qadir A 2008 Eur. Phys. J. C 58 325
[20] Babichev E, Dokuchaev V and Eroshenko Y J 2011 Exp. Theor. Phys. 112 793
[21] Madrid J A Jimenez and Gonzalez-Dias P F 2008 Gravit. Cosmol. 14 213
[22] Sharif M and Abbas G 2011 Mod. Phys. Lett. A 26 1731
[23] Sung-Won K 1991 J. Korean Phys. Soc. 24 118
[24] Gibbons G W and Hawking S W 1997 Phys. Rev. D 15 2752
[25] Khanel U and Panchapakesan N 1981 Phys. Rev. D 24 829
[26] Nagai H 1972 Prog. Theor. Phys. 82 322
[27] Martin-Moruno P et al 2009 Gen. Relativ. Gravit. 41 2797
[28] Padmanabhan T 2000 Theoretical Astrophysics: Astrophysical Processes (Cambridge: Cambridge University) vol 1