Einstein Energy-Momentum Complex for a Phantom Black Hole Metric
P. K. Sahoo1** , K. L. Mahanta2 , D. Goit3 , A. K. Sinha4 , S. S. Xulu5 , U. R. Das4 , A. Prasad6 , R. Prasad7
1 Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
2 Department of Mathematics, C.V. Raman College of Engineering, Bhubaneswar 752054, India
3 Department of Physics, B.S. College, Patna 800012, India
4 Department of Physics, College of Commerce, Patna 800020, India
5 Department of Computer Science, University of Zululand, Kwa-Dlangezwa 3886, South Africa
6 Department of Physics, D.N. College, Patna 804452, India
7 Department of Physics, L.S. College, Muzaffarpur 842001, India
Abstract :We calculate the energy distribution associated with a static spherically symmetric non-singular phantom black hole metric in Einstein's prescription in general relativity. As required for the Einstein energy-momentum complex, we perform the calculations in quasi-Cartesian coordinates. We also calculate the momentum components and obtain a zero value, as expected from the geometry of the metric.
出版日期: 2015-01-20
引用本文:
. [J]. 中国物理快报, 2015, 32(02): 20402-020402.
P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, R. Prasad. Einstein Energy-Momentum Complex for a Phantom Black Hole Metric. Chin. Phys. Lett., 2015, 32(02): 20402-020402.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/2/020402
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I02/20402
[1] Møller C 1958 Ann. Phys. (NY) 4 347
Møller C 1961 Ann. Phys. (NY) 12 118
[2] Tolman R C 1930 Phys. Rev. 35 875
[3] Landau L D and Lifshitz E M 1987 The Classical Theory of Fields (Oxford: Pergamon Press) p 280
[4] Weinberg S 1972 Gravitation and Cosmology: Principles and Applications of General Theory of Relativity (New York: John Wiley Sons) p 165
[5] Papapetrou A 1948 Proc. R. Irish. Acad. A 52 11
[6] Bergmann P G and Thomson R 1953 Phys. Rev. 89 400
[7] Komar A 1959 Phys. Rev. 113 934
[8] Penrose R 1982 Proc. R. Soc. London A 381 53
[9] Virbhadra K S 1990 Phys. Rev. D 41 1086
Virbhadra K S 1990 Phys. Rev. D 42 1066
Virbhadra K S 1990 Phys. Rev. D 42 2919
[10] Chamorro A and Virbhadra K S 1995 Pramana J. Phys. 45 181
Chamorro A and Virbhadra K S 1996 Int. J. Mod. Phys. D 5 251
Virbhadra K S and Parikh J C 1993 Phys. Lett. B 317 312
Virbhadra K S and Parikh J C 1994 Phys. Lett. B 331 302
Virbhadra K S 1997 Int. J. Mod. Phys. A 12 4831
Virbhadra K S 1997 Int. J. Mod. Phys. D 6 357
Virbhadra K S1995 Pramana J. Phys. 44 317
Virbhadra K S1992 Pramana J. Phys. 38 31
Virbhadra K S1991 Phys. Lett. A 157 195
[11] Rosen N and Virbhadra K S 1993 Gen. Relativ. Gravit. 25 429
Virbhadra K S 1995 Pramana J. Phys. 45 215
[12] Rosen N 1994 Gen. Relativ. Gravit. 26 319
[13] Aguirregabiria J M, Chamorro A and Virbhadra K S 1996 Gen. Relativ. Gravit. 28 1393
[14] Virbhadra K S 1999 Phys. Rev. D 60 104041
[15] Johri V B et al 1995 Gen. Relativ. Gravit. 27 313
[16] Xulu S S 1998 Int. J. Theor. Phys. 37 1773
Xulu S S 1998 Int. J. Mod. Phys. D 7 773
Xulu S S 2000 Int. J. Mod. Phys. A 15 2979
Xulu S S 2000 Int. J. Theor. Phys. 39 1153
Xulu S S 2000 Int. J. Mod. Phys. A 15 4849
Xulu S S 2000 Mod. Phys. Lett. A 15 1511
Xulu S S 2003 Astrophys. Space Sci. 283 23
[17] Xulu S S 2007 Int. J. Theor. Phys. 46 2915
Xulu S S 2006 Chin. J. Phys. 44 348
Xulu S S 2006 Found. Phys. Lett. 19 603
Radinschi I 2001 Chin. J. Phys. 39 393
Radinschi I 2001 Chin. J. Phys. 39 231
Radinschi I 2004 Int. J. Mod. Phys. D 13 1019
[18] Loi S L and Vargas T 2005 Chin. J. Phys. 43 901
Aydogdu O 2006 Int. J. Mod. Phys. D 15 459
Aydogdu O and Salti M 2006 Czech. J. Phys. 56 8
Aygun S and Tarhan I 2012 Pramana J. Phys.: J. Phys. 78 531
[19] Andrade V C de, Guillen L C T and Pereira J G 2000 Phys. Rev. Lett. 84 4533
[20] Bachall N A, Ostriker J P, Perlmutter S and Steinhardt P J 1999 Science 284 1481
Perlmutter S J et al 1999 Astrophys. J. 517 565
Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 9 373
[21] Caldwell R R 2002 Phys. Lett. B 545 23
Nojiri S and Odintsov S D 2004 Phys. Rev. D 70 103522
Parker L and Raval A 1999 Phys. Rev. D 60 063512
Chiba T, Okabe T and Yamaguchi M 2000 Phys. Rev. D 62 023511
[22] Gao C J and Zhang S N 2006 arXiv:hep-th/0604114
[23] Babichev E R, Dokuchaev V and Eroshenko Yu 2004 Phys. Rev. Lett. 93 021102
[24] Bronnikov K A and Fabris J C 2005 arXiv:gr-qc/0511109
[25] Bronnikov K A and Fabris J C 2006 Phys. Rev. Lett. 96 251101
[26] Ding C, Liu C, Xiao Y, Jiang L and Cai R G 2013 Phys. Rev. D 88 104007
[27] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (W. H. Freeman and Co.) p 603
[28] Cooperstock F I and Sarracino R S 1978 J. Phys. A 11 877
[29] Claudel C M, Virbhadra K S and Ellis G F R 2001 J. Math. Phys. 42 818
Virbhadra K S and Ellis G F R 2000 Phys. Rev. D 62 084003
Virbhadra K S and Ellis G F R 2002 Phys. Rev. D 65 103004
Virbhadra K S 2009 Phys. Rev. D 79 083004
Virbhadra K S 2008 Phys. Rev. D 77 124014
Virbhadra K S 1998 Astron. Astrophys. 337 1
[1]
. [J]. 中国物理快报, 2018, 35(9): 90201-.
[2]
. [J]. 中国物理快报, 2017, 34(8): 80401-.
[3]
. [J]. 中国物理快报, 2015, 32(12): 120401-120401.
[4]
. [J]. 中国物理快报, 2015, 32(07): 70201-070201.
[5]
. [J]. 中国物理快报, 2015, 32(02): 20401-020401.
[6]
. [J]. 中国物理快报, 2014, 31(09): 90401-090401.
[7]
. [J]. 中国物理快报, 2014, 31(07): 70401-070401.
[8]
. [J]. 中国物理快报, 2014, 31(1): 10401-010401.
[9]
. [J]. 中国物理快报, 2013, 30(11): 119801-119801.
[10]
. [J]. 中国物理快报, 2012, 29(10): 100201-100201.
[11]
. [J]. 中国物理快报, 2012, 29(8): 80404-080404.
[12]
CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations [J]. 中国物理快报, 2012, 29(5): 50202-050202.
[13]
José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity [J]. 中国物理快报, 2012, 29(5): 50401-050401.
[14]
Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity [J]. 中国物理快报, 2012, 29(5): 50402-050402.
[15]
R. K. Tiwari**;D. Tiwari;Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term [J]. 中国物理快报, 2012, 29(1): 10403-010403.