摘要The strong similarities between the light propagation in a curved spacetime and that in a medium with graded refractive index are found. It is pointed out that a curved spacetime is equivalent to an inhomogeneous vacuum for light propagation. The corresponding graded refractive index of the vacuum in a static spherically symmetrical gravitational field is derived. This result provides a simple and convenient way to analyse the gravitational lensing in astrophysics.
Abstract:The strong similarities between the light propagation in a curved spacetime and that in a medium with graded refractive index are found. It is pointed out that a curved spacetime is equivalent to an inhomogeneous vacuum for light propagation. The corresponding graded refractive index of the vacuum in a static spherically symmetrical gravitational field is derived. This result provides a simple and convenient way to analyse the gravitational lensing in astrophysics.
YE Xing-Hao;LIN Qiang. Inhomogeneous Vacuum: An Alternative Interpretation of Curved Spacetime[J]. 中国物理快报, 2008, 25(5): 1571-1574.
YE Xing-Hao, LIN Qiang. Inhomogeneous Vacuum: An Alternative Interpretation of Curved Spacetime. Chin. Phys. Lett., 2008, 25(5): 1571-1574.
[1] Bennett C L 2006 Nature 440 1126 [2] Bennett C L 2005 Science 307 879 [3] Amelino-Camelia G 2000 Nature 408 661 [4] Brumfiel G 2007 Nature 448 245 [5] Speake C 2007 Nature 446 31 [6] Batell B and Gherghetta T 2007 Phys. Rev. D 75 025022 [7] Majee S K et al 2007 Phys. Rev. D 75 075003 [8] Sotiriou T P 2006 Phys. Rev. D 73 063515 [9] Carroll S M 2006 Nature 440 1132 [10] Wilczek F 2005 Nature 433 239 [11] Hogan C J 2002 Science 295 2223 [12] Amelino-Camelia G 2000 Phys. Rev. D 62 024015 [13] Puthoff H E 2002 Found. Phys. 32 927 [14] Puthoff H E, Davis E W and Maccone C 2005 Gen. Rel. Grav. 37 483 [15] Ye X H and Lin Q 2008 J. Mod. Opt. (accepted) arxiv.org 0704.3485v1 [16] Ahmadi N and Nouri-Zonoz M 2006 Phys. Rev. D 74 044034 [17] Rikken G L J A and Rizzo C 2003 Phys. Rev. A 67 015801 [18] Dupays A et al 2005 Phys. Rev. Lett. 94 161101 [19] Armoni A, Gorsky A and Shifman M 2005 Phys. Rev. D 72105001 [20] Barroso A et al 2006 Phys. Rev. D 74 085016 [21] Dienes K R, Dudas E and Gherghetta T 2005 Phys. Rev. D 72 026005 [22] Gies H and Klingm\"uller K 2006 Phys. Rev. Lett. 96220401 [23] Emig T et al 2007 Phys. Rev. Lett. 99 170403 [24] Lamoreaux S K 1997 Phys. Rev. Lett. 78 5 [25] Chan H B et al 2001 Science 291 1941 [26] Eddington A S 1920 Space, Time and Gravitation(Cambridge: Cambridge University Press) p 109 [27] Wilson H A 1921 Phys. Rev. 17 54 [28] Dicke R H 1957 Rev. Mod. Phys. 29 363 [29] Felice F 1971 Gen. Rel. Grav. 2 347 [30] Nandi K K and Islam A 1995 Am. J. Phys. 63 251 [31] Evans J, Nandi K K and Islam A 1996 Am. J. Phys. 641404 [32] Evans J, Nandi K K and Islam A 1996 Gen. Rel. Grav. 28413 [33] Vlokh R 2004 Ukr. J. Phys. Opt. 5 27 Vlokh R and Kostyrko M 2005 Ukr. J. Phys. Opt. 6 120 Vlokh R and Kostyrko M 2006 Ukr. J. Phys. Opt. 7 179 [34] Winn J N, Rusin D and Kochanek C S 2004 Nature 427 613 [35] Landau L D and Lifshitz E M 1975 The Classical Theory ofFields (New York: Pergamon) p 254 [36] Amore P and Arceo S 2006 Phys. Rev. D 73 083004 [37] Virbhadra K S and Ellis G F R 2002 Phys. Rev. D 65103004 [38] Weinberg S 1972 Gravitation and Cosmology (New York:Wiley) pp 180 189 302 [39] Born M and Wolf E 1999 Principles of Optics 7th edn(Cambridge: Cambridge University Press) p 129 [40] Ye X H and Lin Q 2007 arxiv.org 0711.0633v3