Hall Conductivity in the Cosmic Defect and Dislocation Spacetime
Kai Ma1** , Jian-Hua Wang1 , Huan-Xiong Yang2 , Hua-Wei Fan3
1 School of Physics Science, Shaanxi University of Technology, Hanzhong 7230002 Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei 2000263 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710000
Abstract :Influences of topological defect and dislocation on conductivity behavior of charge carriers in external electromagnetic fields are studied. Particularly the quantum Hall effect is investigated in detail. It is found that the nontrivial deformations of spacetime due to topological defect and dislocation produce an electric current at the leading order of perturbation theory. This current then induces a deformation on the Hall conductivity. The corrections on the Hall conductivity depend on the external electric fields, the size of the sample and the momentum of the particle.
收稿日期: 2016-06-10
出版日期: 2016-10-27
:
04.62.+v
(Quantum fields in curved spacetime)
11.27.+d
(Extended classical solutions; cosmic strings, domain walls, texture)
12.20.Ds
(Specific calculations)
[1] Kibble T W B 1976 J. Phys. A 9 1387 [2] Muniz C R, Bezerra V B and Cunha M S 2014 Ann. Phys. 350 105 [3] Hiscock W A 1985 Phys. Rev. D 31 3288 [4] Vilenkin A 1985 Phys. Rep. 121 263 [5] Barriola M and Vilenkin A 1989 Phys. Rev. Lett. 63 341 [6] Vilenkin A 1983 Phys. Lett. B 133 177 [7] Kleinert H 1989 Gauge Fields in Condensed Matter (Singapore: World Scientific) vol 4 chap 2 p 1362 [8] Katanaev M O and Volovich I V 1999 Ann. Phys. 271 203 [9] Katanaev M O and Volovich I V 1992 Ann. Phys. (NY) 216 1 [10] Furtado C and Moraes F 1994 Phys. Lett. A 188 394 [11] de J G, Furtado C and Bezerra V B 2000 Phys. Rev. D 62 045003 [12] Bakke K, Ribeiro L R, Furtado C and Nascimento J R 2009 Phys. Rev. D 79 024008 [13] Bakke K 2014 Ann. Phys. (NY) 346 51 [14] Eugenio R and Bezerra de Mello 2004 J. High Energy Phys. 0406 016 [15] Mota H F and Bakke K 2014 Phys. Rev. D 89 027702 [16] Bakke K 2013 Gen. Relativ. Gravit. 45 1847 [17] Bakke K, Nascimento J R and Furtado C 2008 Phys. Rev. D 78 064012 [18] Bakke K and Furtado C 2013 Ann. Phys. (NY) 336 489 [19] Belich H and Bakke K 2014 Phys. Rev. D 90 025026 [20] Montero M and Martin-Martinez E 2011 Phys. Rev. A 84 012337 [21] Shen J Q 2004 Phys. Rev. D 70 067501 [22] Wang J H, Ma K and Li K 2013 Phys. Rev. A 87 032107 [23] Wang J H, Ma K, Li K and Fan H W 2015 Ann. Phys. 362 327 [24] Yang H X and Ma H L 2008 J. Cosmol. Astropart. Phys. 8 24 [25] Ma K and Dulat S 2011 Phys. Rev. A 84 012104 [26] Ma K, Wang J H and Yang H X 2016 Phys. Lett. B 756 221 [27] Chowdhury D and Basu B 2014 Phys. Rev. D 90 125014 [28] Chowdhury D and Basu B 2013 Ann. Phys. 329 166 [29] Basu B and Chowdhury D 2013 Ann. Phys. 335 47 [30] Basu B, Chowdhury D and Ghosh S 2013 Phys. Lett. A 377 1661 [31] Furtado C et al F 1994 Phys. Lett. A 195 90 [32] Marques G A, Furtado C, Bezerra V B and Moraes F 2001 J. Phys. A 34 5945 [33] Gal'tsov D V and Letelier P S 1993 Phys. Rev. D 47 4273 [34] De V A and Moreira Jr E S 2002 Phys. Rev. D 65 085013 [35] Nakahara M 1998 Geometry, Topology and Physics (Bristol: Institute of Physics Publishing) [36] Hindmarsh M B and Kibble T W B 1995 Rep. Prog. Phys. 58 477 [37] Foldy L L and Wouthuysen S 1950 Phys. Rev. 78 29 [38] Landau L D and Lifshitz L M 1981 Quantum Mechanics (Singapore: Elsevier) vol 3 chap 3 p 67
[1]
. [J]. 中国物理快报, 2014, 31(10): 100401-100401.
[2]
. [J]. 中国物理快报, 2013, 30(6): 60307-060307.
[3]
. [J]. 中国物理快报, 2012, 29(8): 80403-080403.
[4]
NI Jun
. Unification of General Relativity with Quantum Field Theory [J]. 中国物理快报, 2011, 28(11): 110401-110401.
[5]
WEI Yi-Huan**;CHU Zhong-Hui
. Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole [J]. 中国物理快报, 2011, 28(10): 100403-100403.
[6]
WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe [J]. 中国物理快报, 2010, 27(5): 50401-050401.
[7]
ZHAO Fan;HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole [J]. 中国物理快报, 2010, 27(2): 20401-020401.
[8]
JIANG Ke-Xia;KE San-Min;PENG Dan-Tao;FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe [J]. 中国物理快报, 2009, 26(7): 70401-070401.
[9]
LI Cheng-Gai;YU Hong-Wei. Radiative Energy Shifts of an Atom Coupled to the Derivative of a Scalar Field near a Reflecting Boundary [J]. 中国物理快报, 2009, 26(5): 50401-050401.
[10]
HUANG Tie-Tie;;ZHU Zhi-Ying;ZHU Yun-Feng;YU Hong-Wei;. Spontaneous Emission of an Atom in a Spacetime with Two Parallel Reflecting Boundaries [J]. 中国物理快报, 2009, 26(4): 40402-040402.
[11]
HE Feng;ZHAO Fan. Statistical-Mechanical Entropy of a Black Hole with a Global Monopole to All Orders in Planck Length [J]. 中国物理快报, 2009, 26(4): 40401-040401.
[12]
LIU Liao. Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant [J]. 中国物理快报, 2008, 25(8): 2789-2790.
[13]
FANG Heng-Zhong;ZHU Jian-Yang. Casimir Energy in Hartle--Hawking State [J]. 中国物理快报, 2008, 25(8): 2791-2794.
[14]
YE Xing-Hao;LIN Qiang. Inhomogeneous Vacuum: An Alternative Interpretation of Curved Spacetime [J]. 中国物理快报, 2008, 25(5): 1571-1574.
[15]
ZHU Zhi-Ying;YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect [J]. 中国物理快报, 2008, 25(5): 1575-1578.