摘要Relations between the tunneling rate and the unified first law of thermodynamics at the apparent horizon of the FRW universe are investigated. The tunneling rate arises as a consequence of the unified first law of thermodynamics in such a dynamical system. Analysis shows how the tunneling is intimately connected with the unified first law of thermodynamics through the principle of conservation of energy.
Abstract:Relations between the tunneling rate and the unified first law of thermodynamics at the apparent horizon of the FRW universe are investigated. The tunneling rate arises as a consequence of the unified first law of thermodynamics in such a dynamical system. Analysis shows how the tunneling is intimately connected with the unified first law of thermodynamics through the principle of conservation of energy.
JIANG Ke-Xia;KE San-Min;PENG Dan-Tao;FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. 中国物理快报, 2009, 26(7): 70401-070401.
JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe. Chin. Phys. Lett., 2009, 26(7): 70401-070401.
[1] Hawking S W 1974 Nature 30 248 Hawking S W 1975 Commun. Math. Phys. 43 199 [2] Hartle J B and Hawking S W 1976 Phys. Rev. D 13 2188 Gibbons G W and Hawking S W 1977 Phys. Rev. D 152752 Christensen S M and Fulling S A 1977 Phys. Rev. D 15 2088 [3] Kraus P and Wilczek F 1995 Nucl. Phys. B 437231 Kraus P and Wilczek F 1995 Nucl. Phys. B 433 403 [4] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042 Parikh M K Preprint hep-th/0402166 [5] Angheben M, Nadalini M, Vanzo L and Zerbini S 2005 J.High Energy Phys. 0505 014 [6] Srinivasan K and Padmanabhan T 1999 Phys. Rev. D 60 24007 Shankaranarayanan S, Srinivasan K and Padmanabhan T 2001 Mod. Phys. Lett. A 16 571 Shankaranarayanan S, Padmanabhan T and Srinivasan K 2002 Class. Quantum Grav. 19 2671 [7]Vagenas E C 2002 Phys. Lett. B 533 302 Medved A J M and Vagenas E C 2005 Mod. Phys. Lett. A 20 2449 Arzano M, Medved A J M and Vagenas E C 2005 J. HighEnergy Phys. 0509 037 Jiang Q Q, Wu S Q and Cai X 2006 Phys. Rev. D 73064003 Hu Y, Zhang J and Zhao Z 2006 Mod. Phys. Lett. A 21 2143 Hu Y, Zhang J and Zhao Z 2007 Int. J. Mod. Phys. D 16 847 Xu Z and Chen B 2007 Phys. Rev. D 75 024041 Wu X and Gao S 2007 Phys. Rev. D 75 044027 Liu C Z and Zhu J Y 2008 Gen. Relat. Grav. 401899 Zhao L 2007 Commun. Theor. Phys. 47 835 Kerner R and Mann R B 2007 Phys. Rev. D 75 084022 Chatterjee B, Ghosh A and Mitra P 2008 Phys. Lett. B 661 307 Ren J R, Li R and Liu F H 2009 Mod. Phys. Lett. A 23 3419 Ren J 2008 Chin. Phys. Lett. 25 1579 He X K and Liu W B 2007 Chin. Phys. Lett. 24 2448 [8] Hu Y, Zhang J and Zhao Z Preprint gr-qc/0601018 [9] Sarkar S and Kothawala D 2008 Phys. Lett. B 659 683 [10] Pilling T 2008 Phys. Lett. B 660 402 [11] Zhang B, Cai Q Y and Zhan M S 2008 Phys. Lett. B 665 260 [12] Hayward S A, Criscienzo R Di, Vanzo L, Nadalini M andZerbini S Preprint gr-qc/0806.0014 [13] Cai R G and Kim S P 2005 J. High Energy Phys. 0502 050 Akbar M and Cai R G 2006 Phys. Lett. B 635 7 Frolov A V and Kofman L 2003 J. Cosmol. Astropart.Phys. 0305 009 Danielsson U K 2005 Phys. Rev. D 71 023516 Bousso R 2005 Phys. Rev. D 71 064024 Calcagni G 2005 J. High Energy Phys. 0509 060 Akbar M and Cai R G 2007 Phys. Rev. D 75 084003 Akbar M and Cai R G 2007 Phys. Lett. B 648 243 Gong Y G and Wang A Z 2007 Phys. Rev. Lett. 99200301 [14] Cai R G, Cao L M and Hu Y P Preprinthep-th/0809.1554 [15] Kodama H 1980 Prog. Theor. Phys. 63 1217 Minamitsuji M and Sasaki M 2004 Phys. Rev. D 70044021 Racz I 2006 Class. Quant. Grav. 23 115 [16] Hayward S A 1994 Phys. Rev. D 49 6467 Hayward S A 1996 Phys. Rev. D 53 1938 Hayward S A 1998 Class. Quantum Grav. 15 3147 Hayward S A, Mukohyama S and Ashworth M C 1999 Phys.Lett. A 256 347 Ashworth M C and Hayward S A 1999 Phys. Rev. D 60084004