摘要Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle, we calculate the statistical entropy of the scalar field in the global monopole black hole spacetime without any artificial cutoff. It is shown that the entropy is proportional to the horizon area.
Abstract:Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle, we calculate the statistical entropy of the scalar field in the global monopole black hole spacetime without any artificial cutoff. It is shown that the entropy is proportional to the horizon area.
HE Feng;ZHAO Fan. Statistical-Mechanical Entropy of a Black Hole with a Global Monopole to All Orders in Planck Length[J]. 中国物理快报, 2009, 26(4): 40401-040401.
HE Feng, ZHAO Fan. Statistical-Mechanical Entropy of a Black Hole with a Global Monopole to All Orders in Planck Length. Chin. Phys. Lett., 2009, 26(4): 40401-040401.
[1] Bekenstein J D 1973 Phys. Rev. D 7 2333 [2] Hawking S W 1975 Commum. Math. Phys. 43 199 [3] `t Hooft G 1985 Nucl. Phys. B 256 727 [4] Lee M H and Kim J K 1996 Phys. Rev. D 54 3904 [5] Lee M H and Kim J K 1996 Phys.Lett. A 212 323 [6] Mann R B and Solodukhin S N 1996 Phys. Rev. D 54 3932 [7] Winstanley E 2001 Phys. Rev. D 63 084013 [8] Jing J L and Yan M L 2001 Phys. Rev. D 64064015 [9] Jing J L and Yan M L 2001 Phys. Rev. D 63084028 [10] Li X 2002 Phys. Rev. D 65 084005 [11] Wei Y H, Wang Y C and Zhao Z 2002 Phys. Rev. D 65 124023 [12] Ghosh T and SenGupta S 2008 Phys. Rev. D 78024045 [13] Li X and Zhao Z 2000 Phys. Rev. D 62 104001 [14] He F, Zhao Z and Kim S W 2001 Phys. Rev. D 64044025 [15] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028 [16] Nouicer K 2007 Phys. Lett. B 646 63 [17] Kim Y W 2008 Phys Rev. D 77 067501 [18] Li X 2002 Phys. Lett. B 540 9 [19] Kim W, Kim Y W and Park Y J 2006 Phys. Rev. D 74 104001 [20] Kim W, Kim Y W and Park Y J 2007 Phys. Rev. D 75 127501 [21] Yoon M 2007 Phys. Rev. D 76 047501 [22] Vilenkin A 1985 Phys. Rep. 121 263 [23] Barriola M and Vilenkin A 1989 Phys. Rev. Lett. 63 341 [24] Birrell N D znd Davies P C 1982 Quantum Fields inthe Curved Space (Cambridge: Cambridge University) [25] Wald R M 1984 General Relativity (Chicago: TheUniversity of Chicago) [26] Kim Y W and Park Y J 2007 Phys. Lett. B 655172