Delocalization of Quantum Kicked Rotator with a Large Denominator
MA Tao1, LI Shu-Min 1,2
1Department of Modern Physics, University of Science and Technology of China, Hefei 2300262Institut fur Theoretische Physik, Univsitat Heidelberg, 69120 Heidelberg, Germany
Delocalization of Quantum Kicked Rotator with a Large Denominator
MA Tao1;LI Shu-Min 1,2
1Department of Modern Physics, University of Science and Technology of China, Hefei 2300262Institut fur Theoretische Physik, Univsitat Heidelberg, 69120 Heidelberg, Germany
摘要We use the iterative unitary matrix multiplication method to calculate the long-time behaviour of the resonant quantum kicked rotator with a large denominator. The delocalization time is an exponential function of the denominator. The wave function delocalizes through degenerate states. We also construct a nonresonant quantum kicked rotator with delocalization.
Abstract:We use the iterative unitary matrix multiplication method to calculate the long-time behaviour of the resonant quantum kicked rotator with a large denominator. The delocalization time is an exponential function of the denominator. The wave function delocalizes through degenerate states. We also construct a nonresonant quantum kicked rotator with delocalization.
MA Tao;LI Shu-Min;. Delocalization of Quantum Kicked Rotator with a Large Denominator[J]. 中国物理快报, 2008, 25(6): 1968-1971.
MA Tao, LI Shu-Min,. Delocalization of Quantum Kicked Rotator with a Large Denominator. Chin. Phys. Lett., 2008, 25(6): 1968-1971.
[1] Abliz A et al 2006 Phys. Rev. A 74 52105 [2] Ji A C, Xie X C, and Liu W M 2007 Phys. Rev. Lett. 99 183602 [3] St\"ockmann H J 1999 Quantum Chaos: An Introduction(Cambridge: Cambridge University Press) [4] Casati G et al 1979 Stochastic behavior in classical andquantum hamiltonian systems in Lecture Notes in Physics ed CasatiG and Ford J (Berlin: Springer) vol 93 pp 334--352 [5] Chirikov B V 1979 Phys. Rep. 52 263 [6] Fishman S, Grempel D R and Prange R E 1982 Phys. Rev.Lett. 49 509 [7] Sokolov V V et al 2000 Phys. Rev. Lett. 84 3566 [8] Hofstadter D R 1976 Phys. Rev. B 14 2239 [9] Casati G and Guarneri I 1984 Comm. Math. Phys. 95 121 [10] Casati G et al 1986 Phys. Rev. A 34 1413 [11] Ma T 2007 e-print nlin/0710.1661 [12] Abramowitz M and Stegun I A 1972 Handbook of MathematicalFunctions with Formulas, Graphs, and Mathematical Tables (New York: Dover) [13] Chang S J and Shi K J 1986 Phys. Rev. A 34 7 [14] Berry M V 1984 Physica D 10 369 [15] Prange R E, Grempel D R and Fishman S 1984 Phys. Rev. B 29 6500 [16] Avron J and Simon B 1982 Bull. Am. Math. Soc. 6 81 [17] Pan C D and Pan C B 2006 Elementary Number Theory(Beijing: Peking University) (in Chinese) [18] Pan C D and Pan C B 1999 Basics of Analytic NumberTheory (Beijing: Science) (in Chinese)