摘要The Fermi-decay law of Bose–Einstein condensate, which is trapped by a cigar-shaped anharmonic trap and subjected to a weak random perturbation, is investigated by numerically calculating quantum fidelity (Loschmidt echo), to reveal the coherence loss of the condensate. We find that there are three indispensable factors, anharmonic trap, weak random perturbation and nonlinear interaction, in charging of the Fermi-decay law. The anharmonic trap creates anharmonic oscillations, and the weak random perturbation causes coherence loss by disturbing their coherent oscillations, while the nonlinear interaction enhances the loss to the Fermi-decay law. Based on the Fermi-decay law, some suggestions are presented to prolong the coherent time during coherently manipulating condensates.
Abstract:The Fermi-decay law of Bose–Einstein condensate, which is trapped by a cigar-shaped anharmonic trap and subjected to a weak random perturbation, is investigated by numerically calculating quantum fidelity (Loschmidt echo), to reveal the coherence loss of the condensate. We find that there are three indispensable factors, anharmonic trap, weak random perturbation and nonlinear interaction, in charging of the Fermi-decay law. The anharmonic trap creates anharmonic oscillations, and the weak random perturbation causes coherence loss by disturbing their coherent oscillations, while the nonlinear interaction enhances the loss to the Fermi-decay law. Based on the Fermi-decay law, some suggestions are presented to prolong the coherent time during coherently manipulating condensates.
LIU Yuan,JIA Ya-Fei,LI Wei-Dong**. Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential[J]. 中国物理快报, 2012, 29(4): 40304-040304.
LIU Yuan,JIA Ya-Fei,LI Wei-Dong**. Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential. Chin. Phys. Lett., 2012, 29(4): 40304-040304.
[1] Manfredi G and Hervieux P A 2008 Phys. Rev. Lett. 100 050405[2] Manfredi G et al 2006 Phys. Rev. Lett. 97 190404[3] Jalabert R A et al 2001 Phys. Rev. Lett. 86 2490[4] Jacquod Ph et al 2001 Phys. Rev. E 64 055203[5] Benenti G et al 2003 Phys. Rev. E 68 036212[6] Cucchietti F M et al 2002 Phys. Rev. E 65 046209[7] Pastawski H M et al 2000 Physica A 283 166[8] Peres A 1984 Phys. Rev. A 30 1610[9] Hodgman S S et al 2011 Science 331 1046[10] Andrews M R et al 1997 Science 275 637[11] Yasuda M and Shimizu F 1996 Phys. Rev. Lett. 77 3090[12] Schellekens M et al 2005 Science 310 648[13] Jeltes T et al 2007 Nature 445 402[14] Öttl A et al 2005 Phys. Rev. Lett. 95 090404[15] Greiner M et al 2005 Phys. Rev. Lett. 94 110401[16] Manz S et al 2010 Phys. Rev. A 81 031610[17] Schumm T et al 2005 Nature Phys. 1 57[18] Scott R G et al 2009 Phys. Rev. A 79 063624[19] Li S C et al 2008 Phys. Rev. A 78 063621Fu L B et al 2009 Phys. Rev. A 80 013619[20] Hall B V et al 2007 Phys. Rev. Lett. 98 030402[21] Jo G -B et al 2007 Phys. Rev. Lett. 98 030407[22] Hagley E W et al 1999 Phys. Rev. Lett. 83 3112[23] Liu J et al 2005 Phys. Rev. A 72 063623Meng S Y et al 2009 Phys. Rev. A 79 063415[24] Bretin V et al 2004 Phys. Rev. Lett. 92 050403[25] Lye J E et al 2005 Phys. Rev. Lett. 95 070401[26] Clément D et al 2006 New J. Phys. 8 165[27] Dalfovo F et al 1999 Rev. Mod. Phys. 71 463[28] Salasnich L et al 2002 Phys. Rev. A 65 043614[29] Li G Q et al 2006 Phys. Rev. A 74 055601[30] Fort C et al 2005 Phys. Rev. Lett. 95 170410[31] Li W D et al 2001 Phys. Lett. A 285 45[32] Lewenstein M and You L 1996 Phys. Rev. Lett. 77 3489[33] Egorov M et al 2011 Phys. Rev. A 84 021605[34] Ferrari G et al 2006 Phys. Rev. Lett. 97 060402[35] Jack M W 2002 Phys. Rev. Lett. 89 140402