2008, Vol. 25(6): 1968-1971    DOI:
Delocalization of Quantum Kicked Rotator with a Large Denominator
MA Tao1, LI Shu-Min 1,2
1Department of Modern Physics, University of Science and Technology of China, Hefei 2300262Institut fur Theoretische Physik, Univsitat Heidelberg, 69120 Heidelberg, Germany
收稿日期 2008-01-06  修回日期 1900-01-01
Supporting info

[1] Abliz A et al 2006 Phys. Rev. A 74 52105

[2] Ji A C, Xie X C, and Liu W M 2007 Phys. Rev. Lett.
99 183602

[3] St\"ockmann H J 1999 Quantum Chaos: An Introduction
(Cambridge: Cambridge University Press)

[4] Casati G et al 1979 Stochastic behavior in classical and
quantum hamiltonian systems in Lecture Notes in Physics ed Casati
G and Ford J (Berlin: Springer) vol 93 pp 334--352

[5] Chirikov B V 1979 Phys. Rep. 52 263

[6] Fishman S, Grempel D R and Prange R E 1982 Phys. Rev.
Lett. 49 509

[7] Sokolov V V et al 2000 Phys. Rev. Lett. 84 3566

[8] Hofstadter D R 1976 Phys. Rev. B 14 2239

[9] Casati G and Guarneri I 1984 Comm. Math. Phys. 95 121

[10] Casati G et al 1986 Phys. Rev. A 34 1413

[11] Ma T 2007 e-print nlin/0710.1661

[12] Abramowitz M and Stegun I A 1972 Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)

[13] Chang S J and Shi K J 1986 Phys. Rev. A 34 7

[14] Berry M V 1984 Physica D 10 369

[15] Prange R E, Grempel D R and Fishman S 1984 Phys. Rev. B
29 6500

[16] Avron J and Simon B 1982 Bull. Am. Math. Soc. 6 81

[17] Pan C D and Pan C B 2006 Elementary Number Theory
(Beijing: Peking University) (in Chinese)

[18] Pan C D and Pan C B 1999 Basics of Analytic Number
Theory (Beijing: Science) (in Chinese)