1Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Cameroon2Ecole Nationale Superieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy
On the Conversion of High-Frequency Soliton Solutions to a (1+1)-Dimensional Nonlinear Partial Differential Evolution Equation
1Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Cameroon2Ecole Nationale Superieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy
摘要From the dynamical equation of barotropic relaxing media beneath pressure perturbations, and using the reductive perturbative analysis, we investigate the soliton structure of a (1+1)-dimensional nonlinear partial differential evolution (NLPDE) equation 8706;y (8706;η+u8706;y+(u2/2)8706;y )u+α uy+u=0, describing high-frequency regime of perturbations. Thus, by means of Hirota's bilinearization method, three typical solutions depending strongly upon a characteristic dissipation parameter are unearthed.
Abstract:From the dynamical equation of barotropic relaxing media beneath pressure perturbations, and using the reductive perturbative analysis, we investigate the soliton structure of a (1+1)-dimensional nonlinear partial differential evolution (NLPDE) equation 8706;y (8706;η+u8706;y+(u2/2)8706;y )u+α uy+u=0, describing high-frequency regime of perturbations. Thus, by means of Hirota's bilinearization method, three typical solutions depending strongly upon a characteristic dissipation parameter are unearthed.
[1] Vakhnenko V O 1999 J. Math. Phys. 40 2011 [2] Morrison A J and Parkes E J 2003 Chaos SolitonsFractals 16 13 [3] Nayfey A H 1973 Perturbation Methods (New York:Wiley) [4] Nitropolsky Y A, Samoilenko A M and Martinyuk D I 1993 Systems of Evolution Equations With Periodic and QuasiperiodicCoefficients (Dordrecht: Kluwer) [5] Fu Z, Liu S and Liu S 2007 J. Phys. A: math. Gen. 40 4739 [6] Tang X Y and Lou S Y 2003 J. Math. Phys. 444000 [7] Lou S Y 1998 Phys. Rev. Lett. 80 5027 [8] Hirota R 1988 Direct Methods in Soliton Theory(Berlin: Springer) [9] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge University Press) [10] Sch$\ddot{a$fer T and Wayne C E 2004 Physica D 196 90 [11] Sakovich A and Sakovich S 2005 J. Phys. Soc. Jpn. 74 239 [12] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 024004 [13] Sakovich A and Sakovich S 2006 J. Phys. A: Math. Gen. 39 L361 [14] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. A: Math. Theor. 40 5585 [15] Parkes E J 2008 Chaos Solitons Fractals 38154 [16] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 073001 [17] Kakuhata H and Konno K 1999 J. Phys. Soc. Jpn. 48 757 [18] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 126001 [19] Huang G L, Wand D Y and Feraudy H 1997 Geophys.Res. 102 7217 [20] Malykh K V and Ogorodnikov I L 1977 Dynamics ofContinuous Media (Moscow: Novosibirsk)