1Key Laboratory of Specially Functional Materials of Ministry of Education, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 5106402Laboratory of Photonic Information Technology, School of Information and Photoelectric Science and Engineering, South China Normal University, Guangzhou 510006
Efficient Fibre Amplifiers Based on a Highly Er3+/Yb3+ Codoped Phosphate Glass-Fibre
1Key Laboratory of Specially Functional Materials of Ministry of Education, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 5106402Laboratory of Photonic Information Technology, School of Information and Photoelectric Science and Engineering, South China Normal University, Guangzhou 510006
摘要Highly Er3+/Yb3+-codoped single-mode phosphate glass fibre is fabricated by the rod-in-tube technique. The performances of high-concentration Er3+/Yb3+-codoped phosphate glass fibre amplifiers are investigated and discussed. An efficient optical fibre amplifier with a gain of 12.6dB based on a 3.0cm long Er3+/Yb3+-codoped phosphate glass fibre is demonstrated under a dual-pump configuration with two 976nm fibre-pigtail laser diodes, which make it attractive for compact Er3+-doped fibre amplifiers. The obtained noise figures of signal wavelength from 1525 to 1565nm are less than 6.0dB. Gain saturation behaviour at 1535nm is also investigated, and the obtained saturation output power is larger than 10dBm.
Abstract:Highly Er3+/Yb3+-codoped single-mode phosphate glass fibre is fabricated by the rod-in-tube technique. The performances of high-concentration Er3+/Yb3+-codoped phosphate glass fibre amplifiers are investigated and discussed. An efficient optical fibre amplifier with a gain of 12.6dB based on a 3.0cm long Er3+/Yb3+-codoped phosphate glass fibre is demonstrated under a dual-pump configuration with two 976nm fibre-pigtail laser diodes, which make it attractive for compact Er3+-doped fibre amplifiers. The obtained noise figures of signal wavelength from 1525 to 1565nm are less than 6.0dB. Gain saturation behaviour at 1535nm is also investigated, and the obtained saturation output power is larger than 10dBm.
[1] Jiang S et al 2000 J. Non-Cryst. Solids 263/264 364 [2] Jiang S 2003 Proc. SPIE 5246 201 [3] Spiegelberg C et al 2004 J. Lightwave Technol. 22 57 [4] Li L et al 2004 Appl. Phys. Lett. 85 2721 [5] Qiu T, Suzuki S, Sch\"{ulzgen A et al 2005 Opt.Lett. 30 2748 [6] Li L et al 2006 Appl. Phys. Lett. 88 161106 [7] Qiu T et al 2004 IEEE Photon. Technol. Lett. 16 2592 [8] Panasenko D et al 2006 IEEE Photon. Technol. Lett. 18 853 [9] Yamashita S et al 2007 Proc. SPIE 645364531Y-1 [10] Barbier D et al 1998 Proc. OFC TuH5 45 [11] Hu Y, Jiang S, Luo T et al 2001 IEEE Photon.Technol. Lett. 13 657 [12] Yan Y C, Faber A J, Waal H de et al 1997 Appl. Phys.Lett. 71 2922 [13] Gardillou F 2004 Appl. Phys. Lett. 85 5176 [14] Xu S H 2006 Chin. Phys. Lett. 23 633 [15] Digonnet M J F 1993 Rare-Earth-Doped Fiber Lasersand Fiber Amplifiers (New York: Dekker) [16] Xu S H, Yang Z M, Zhang Q Y, Li Z, Deng Z D and Xu W C2007 Chin. Phys. Lett. 24 1955 [17] Xu S H, Yang Z M, Feng Z M et al 2008 $2$$^{nd$ IEEEInternational Nanoelectronics Conference 1--3 633 [18] Xu S H, Yang Z M, Xu W C et al 2009 Chin. Phys.Lett. 26 014203 [19] Zhang Q Y, Pita K, Zuo L P et al 2004 Appl. Phys.Lett. 84 1638 [20] Jiang S, Mendes S B, Hu Y et al 2003 Opt. Eng. 42 2817