Tm3+-doped Ga2O3-GeO2-Bi2O3-PbO(PbF2) Glasses for 1.47-μm Optical Amplifications
SHI Dong-Mei, ZHANG Qin-Yuan, YANG Gang-Feng, LIU Yue-Hui, JIANG Zhong-Hong
Key Laboratory of Special Functional Materials and Advanced Manufacturing Technology (Ministry of Education), Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640
Tm3+-doped Ga2O3-GeO2-Bi2O3-PbO(PbF2) Glasses for 1.47-μm Optical Amplifications
SHI Dong-Mei;ZHANG Qin-Yuan;YANG Gang-Feng;LIU Yue-Hui;JIANG Zhong-Hong
Key Laboratory of Special Functional Materials and Advanced Manufacturing Technology (Ministry of Education), Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640
Abstract: We report the spectroscopic properties and thermal stability of Tm3+-doped Ga2O3-GeO2-Bi2O3-PbO(PbF2) glasses for 1.47-μm optical amplifications. Effects of PbF2 doping on the optical properties and thermal stability of Tm3+-doped gallate--germanium--bismuth--lead glass are investigated. The measured peak wavelength and full width at half-maximum of the fluorescence are 1465nm and ~ 120nm, respectively. Significant enhancement of the 1.47-μm emission and the lifetime of a 3+H4 level with increasing PbF2 doping have been observed. The presence of GeO2 provides two potentials of increasing the thermal stability and shortening the ultraviolet cutoff band of host glasses.