摘要A simple method for synthesis of well dispersed cadmium sulphide nanoparticles embedded in a polyethylene glycol matrix (PEG 400) in thin film form is presented. The large blue shift of the band gap energy of the CdS nanoparticles compared to the bulk semiconductors is observed via UV-vis absorption spectra. Photoluminescence spectra of CdS nanocomposite films show that the emission peaks shift towards the longer wavelength with the increase of annealing temperature. Transmission electron microscopic images as well as Raman scattering studies confirm the CdS nanometer size particle formation within the polymer matrix. The particle size is about 8 nm. Selected area electron diffraction (SAED) shows the cubic zinc blende polycrystalline rings. Third-order optical nonlinearity of the CdS nanoparticles embedded in polymer thin films is studied with the Z-scan technique under 1064 nm excitation. The results show that the CdS nanocomposite film exhibits negative nonlinear refraction index and positive absorption coefficient. The film shows large optical nonlinearity, and the magnitude of the third-order nonlinear susceptibility of the film is calculated to be 1.73×10-9 esu. The corresponding mechanism is discussed.
Abstract:A simple method for synthesis of well dispersed cadmium sulphide nanoparticles embedded in a polyethylene glycol matrix (PEG 400) in thin film form is presented. The large blue shift of the band gap energy of the CdS nanoparticles compared to the bulk semiconductors is observed via UV-vis absorption spectra. Photoluminescence spectra of CdS nanocomposite films show that the emission peaks shift towards the longer wavelength with the increase of annealing temperature. Transmission electron microscopic images as well as Raman scattering studies confirm the CdS nanometer size particle formation within the polymer matrix. The particle size is about 8 nm. Selected area electron diffraction (SAED) shows the cubic zinc blende polycrystalline rings. Third-order optical nonlinearity of the CdS nanoparticles embedded in polymer thin films is studied with the Z-scan technique under 1064 nm excitation. The results show that the CdS nanocomposite film exhibits negative nonlinear refraction index and positive absorption coefficient. The film shows large optical nonlinearity, and the magnitude of the third-order nonlinear susceptibility of the film is calculated to be 1.73×10-9 esu. The corresponding mechanism is discussed.
[1] Eaton D F 1991 Science 253 281 [2] Alivisatos A P 1996 Science 271 933 [3] Brus L E 1991 Appl. Phys. A 53 465 [4] Ekimov A et al 1985 Solid State Commun. 56 921 [5] Nie W J 1993 Adv. Mater. 5 520 [6] Beecroft L L and Ober C K 1997 Chem. Mater. 91302 [7] Pei S H et al 2008 Chin. Phys. Lett. 25 4292 [8] You G J et al 2007 Chin. Phys. Lett. 24 730 [9] Tohge N et al 1992 J. Non. Cryst. Solids 652147 [10] Atta A K et al 1992 Mater. Lett. 15 99 [11] Guglielmi M et al 1997 J. Sol-Gel Sci. Technol. 8 1017 [12] Saenger D U et al 1998 J. Sol-Gel Sci. Technol. 13 635 [13] Huang W and Si J 2000 J. Mater. Res. 11 2343 [14] Dutta A K et al 2000 Chem. Mater. 12 1042 [15] Schwerzel R E et al 1998 J. Phys. Chem. A 102 5622 [16] Carrot G et al 1999 Chem. Mater. 11 3571 [17] Spanhel L et al 1992 J. Non-Cryst. Solids 657 147 [18] Wang Y and Mahler W 1987 Opt. Commun. 61 223 [19] Hilinski E et al 1988 J. Chem. Phys. 893435 [20] Ludolph B et al 1998 Chem. Commun. 4464 [21] Brus L E 1984 J Chem. Phys. 79 4403 [22] Pattabi Manjunatha et al 2007 Mater. Res. Bull. 42 828 [23] Yu W W et al 2003 Chem. Mater. 15 2854 [24] Skinner D E et al 1995 J. Phys. Chem. 997853 [25] Roberti T W et al 1998 J. Chem. Phys. 1082143 [26] Brelle M C and Zhang J Z 1998 J. Chem. Phys. 108 3119 [27] Cherepy N J et al 1998 J. Phys. Chem. B 102770 [28] Brelle M C et al 1999 J. Phys. Chem. A 10310194 [29] Sengupta A et al 1999 J. Phys. Chem. B 1033128 [30] Resch U et al 1992 Langmuir 8 2215. [31] Lin Y et al 2002 Appl. Phys. Lett. 81 3134 [32] Chestoy N et al 1986 J. Phys. Chem. 90 3393 [33] Othmani A et al 1993 Mater. Sci. Eng. A 168 263 [34] Huang W M and Shi J L 2001 Scr. Mater. 44 117 [35] Sheik-Bahae M et al 1990 IEEE J. QuantumElectron. 26 760 [36] Yin M et al 2000 Appl. Phys. B 70 587 [37] Lin Y et al 2004 Mater. Sci. 39 993 [38] He J et al 2005 J. Phys. Chem. B 109 4373 [39] Liu Q M et al 2002 Chin. Phys. Lett. 19 575 [40] Liu H et al 2007 Solid State Commun. 142 94 [41] Brus L B 1983 J. Chem. Phys. 79 5566