A Novel Method for PIT Effects Based on Plasmonic Decoupling
Bin Sun1** , Fei-Feng Xie1 , Shuai Kang1 , You-chang Yang1 , Jian-Qiang Liu2
1 Department of Physics, Zunyi Normal College, Zunyi 5630022 College of Science, Jiujiang University, Jiujiang 332005
Abstract :A tunable dual-band stop-band THz spectrum can be realized in a hybrid structure, which consists of metal nanoribbon arrays clad by graphene nanoribbons. Dual-band spectra can be controlled separately by the nanoribbon width $w$ and graphene chemical potential $\mu_{\rm c}$. We explain that two local plasmonic modes excited at graphene ribbons belong to different gratings, which uncouple with each other by electro-magnetic shielding of the metal ribbons. Furthermore, plasmonic induced transparent (PIT) effects can also be realized by making the two transmission notches close to each other, with better performance than the PIT system based on plasmonic coupling, such as with a larger extinction radio and a tunable transparency window.
收稿日期: 2018-09-03
出版日期: 2018-12-25
:
78.67.Wj
(Optical properties of graphene)
78.20.-e
(Optical properties of bulk materials and thin films)
78.67.Pt
(Multilayers; superlattices; photonic structures; metamaterials)
78.66.-w
(Optical properties of specific thin films)
[1] Vakil A and Engheta N 2011 Science 332 1291 [2] Liu H, Ren G, Gao Y, Zhu B and Wu B 2016 Plasmonics 11 411 [3] Wang P D, Jia Z Y and Cheng N P 2018 Chin. Phys. B 27 57101 [4] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M and Basov D N 2012 Nature 487 82 [5] Chen J et al 2012 Nature 487 77 [6] Lin I T, Fan C and Liu J M 2017 IEEE J. Sel. Top. Quantum Electron. 23 1 [7] Li H P, Fu W Y, Shen X P, Hua K and Wang W H 2017 Chin. Phys. B 26 127801 [8] Zhang S, Li G C, Chen Y, Zhu X, Liu S D, Lei D Y and Duan H 2016 ACS Nano 10 11105 [9] Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L and García de Abajo F J 2011 ACS Nano 6 431 [10] Sun Y, Zheng Z, Cheng J, Liu J, Liu J and Li S 2013 Appl. Phys. Lett. 103 6 [11] He S, Yang M and Wang R Q 2018 Chin. Phys. B 27 47303 [12] Zhang Q and Zhang H 2018 Chin. Phys. B 27 27301 [13] Fan Y, Chen C and Li D G 2017 Chin. Phys. B 26 17302 [14] Tan S, Argondizzo A, Ren J, Liu L, Zhao J and Petek H 2017 Nat. Photon. 11 806 [15] Bafandeh N, Larijani M M, Shafiekhani A, Hantehzadeh M R and Sheikh N 2016 Chin. Phys. Lett. 33 117801 [16] Chen J, Mao P, Xu R, Tang C, Liu Y, Wang Q and Zhang L 2015 Opt. Express 23 16238 [17] Gu X F, Lin I T and Liu J M 2013 Appl. Phys. Lett. 103 071103 [18] Jadidi M M, Sushkov A B, Myers-ward R L, Boyd A K, Daniels K M and Gaskill D K 2015 arXiv:1506.05817v2 [19] Thongrattanasiri S, Koppens F H L and García de A F J 2012 Phys. Rev. Lett. 108 047401 [20] Zuo R, Liu W, Cheng H, Chen S and Tian J 2018 Adv. Opt. Mater. 6 1800795 [21] Duan X, Chen S, Cheng H, Li Z and Tian J 2013 Opt. Lett. 38 483 [22] Cheng H et al 2013 Appl. Phys. Lett. 103 203112 [23] Liu W, Li Z, Cheng H, Tang C, Li J, Zhang S, Chen S and Tian J 2018 Adv. Mater. 30 1706368 [24] Liu H, Zhu J P, Wang K, Wang X H and Xu R 2016 Chin. Phys. Lett. 33 064204 [25] Han W et al 2016 Chin. Phys. Lett. 33 027803 [26] Li F and Wu H 2016 Chin. Phys. Lett. 33 067101 [27] Chen P Y and Alù A 2011 ACS Nano 5 5855 [28] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222 [29] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[1]
. [J]. 中国物理快报, 2020, 37(10): 106801-.
[2]
. [J]. 中国物理快报, 2017, 34(1): 16101-016101.
[3]
. [J]. 中国物理快报, 2016, 33(02): 27802-027802.
[4]
. [J]. 中国物理快报, 2015, 32(07): 76802-076802.
[5]
. [J]. 中国物理快报, 2015, 32(02): 24204-024204.
[6]
. [J]. 中国物理快报, 2014, 31(07): 74204-074204.
[7]
. [J]. 中国物理快报, 2014, 31(05): 57802-057802.
[8]
. [J]. Chin. Phys. Lett., 2012, 29(11): 114206-114206.