Surface Plasmon and Fabry–Perot Enhanced Magneto-Optical Kerr Effect in Graphene Microribbons
CHEN Tuo, LU Xuan-Hui**
Department of Physics, Zhejiang University, Hangzhou 310027
Abstract :A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be realized and further increased by the introduction of surface plasmon and constructive Fabry–Pérot interference with the supporting substrate. The maximum Kerr rotation angle is up to 15° in a single layer of graphene ribbons at 6 THz for the applied magnetic field 4 T. Such a magnification in magneto-optical Kerr effect can be realized in a fairly large incident angle.
出版日期: 2015-01-20
[1] Faraday M 1846 Philos. Trans. R. Soc. 136 104 [2] Kerr J 1877 Philos. Mag. 3 321 [3] Hopster H and Oepen H P 2005 Magnetic Microscopy of Nanostructures (Berlin: Springer) [4] Liu M, Yin X B, Avila E U, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64 [5] Vakil A and Engheta N 2011 Science 332 1291 [6] Zhao J Q, Wang Y G, Yan P G, Ruan S C, Cheng J Q, Du G G, Yu Y Q, Zhang G L, Wei H F, Luo J and Yuen H T 2012 Chin. Phys. Lett. 29 114206 [7] Li H P, Xia H D, Wang Z G, Zhang X X, Chen Y F, Zhang S J, Tang X G and Liu Y 2014 Chin. Phys. B 23 024209 [8] Chen T and He S 2014 Opt. Express 22 19748 [9] Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411 [10] He S, Zhang X Z and He Y R 2013 Opt. Express 21 30664 [11] He S and Chen T 2013 Terahertz Sci. Technol. IEEE Transaction 3 757 [12] Cheng Y, Yao B C, Wu Y, Wang Z G, Gang Y and Yao Y J 2013 Acta Phys. Sin. 62 237805 (in Chinese) [13] Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, van der Marel D and Kuzmenko A B 2011 Nat. Phys. 7 48 [14] Jain P K, Xiao Y, Walsworth R and Cohen A E 2009 Nano Lett. 9 1644 [15] Tymchenko M, Nikitin A Y and Martin-Moreno L 2013 ACS Nano 7 9780 [16] Kubo R 1957 J. Phys. Soc. Jpn. 12 570 [17] Koppens F H L, Chang D E and García D A F J 2011 Nano Lett. 11 3370 [18] Gusynin V P, Sharapov S G and Carbotte J P 2009 New J. Phys. 11 095013 [19] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351 [20] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602 [21] Orlita M, Faugeras C, Neugebauer P, Martinez G, Maude D K, Barra A L, Sprinkle M, Berger C, de Heer W A and Poremski M 2008 Phys. Rev. Lett. 101 267601 [22] Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P and Xia F N 2013 Nat. Photon. 7 394 [23] Christensen J, Manjavacas A, Thtongrattanasiri S, Kpppens F H L and de Abajo F J G 2012 ACS Nano 6 431 [24] Fialkovsky I and Vassilevich D V 2009 J. Phys. A: Math. Theor. 42 442001
[1]
. [J]. 中国物理快报, 2022, 39(3): 34201-.
[2]
. [J]. 中国物理快报, 2020, 37(12): 124201-.
[3]
. [J]. 中国物理快报, 2020, 37(6): 64204-.
[4]
. [J]. 中国物理快报, 0, (): 64204-.
[5]
. [J]. 中国物理快报, 2020, 37(2): 24201-.
[6]
. [J]. 中国物理快报, 2019, 36(6): 63201-.
[7]
. [J]. 中国物理快报, 2018, 35(10): 104204-.
[8]
. [J]. 中国物理快报, 2018, 35(9): 90303-.
[9]
. [J]. 中国物理快报, 2018, 35(5): 54204-.
[10]
. [J]. 中国物理快报, 2018, 35(3): 34202-.
[11]
. [J]. 中国物理快报, 2017, 34(8): 84204-.
[12]
. [J]. 中国物理快报, 2017, 34(7): 74209-.
[13]
. [J]. 中国物理快报, 2017, 34(5): 54203-.
[14]
. [J]. 中国物理快报, 2017, 34(5): 54205-.
[15]
. [J]. 中国物理快报, 2017, 34(4): 44204-044204.