摘要We use the direct method proposed by He et al. [Phys. Lett. B 680 (2009) 432) to calculate the quark-number susceptibility (QNS) at finite temperature and the chemical potential in the quasi-particle model. In our approach the QNS is given by a formula solely involving the dressed quark propagator at finite chemical potential μ and temperature Τ. The QNS at finite μ and Τ is calculated in the quasi-particle model. It is found that at high temperatures the QNS tends to the ideal quark gas result. At very small temperatures the QNS vanishes. This vanishing behavior in the low-temperature region is consistent with the lattice results. For μ∈ [0,180] MeV, our results show that there exists a rapid increase of QNS near some temperatures. The temperature at which the rapid increase occurs shifts to smaller values with the increasing quark chemical potential. This rapid increase could be regarded as a signal of a crossover.
Abstract:We use the direct method proposed by He et al. [Phys. Lett. B 680 (2009) 432) to calculate the quark-number susceptibility (QNS) at finite temperature and the chemical potential in the quasi-particle model. In our approach the QNS is given by a formula solely involving the dressed quark propagator at finite chemical potential μ and temperature Τ. The QNS at finite μ and Τ is calculated in the quasi-particle model. It is found that at high temperatures the QNS tends to the ideal quark gas result. At very small temperatures the QNS vanishes. This vanishing behavior in the low-temperature region is consistent with the lattice results. For μ∈ [0,180] MeV, our results show that there exists a rapid increase of QNS near some temperatures. The temperature at which the rapid increase occurs shifts to smaller values with the increasing quark chemical potential. This rapid increase could be regarded as a signal of a crossover.
CAO Jing;ZHAO A-Meng;LUO Liu-Jun;SUN Wei-Min;ZONG Hong-Shi;. Calculation of Quark-Number Susceptibility at Finite Chemical Potential and Temperature[J]. 中国物理快报, 2010, 27(3): 31201-031201.
CAO Jing, ZHAO A-Meng, LUO Liu-Jun, SUN Wei-Min, ZONG Hong-Shi,. Calculation of Quark-Number Susceptibility at Finite Chemical Potential and Temperature. Chin. Phys. Lett., 2010, 27(3): 31201-031201.
[1] Stephanov M 2006 Proc. Sci. LAT 2006 024 [arXiv:hep-lat/0701002v1] [2] Heinz U arXiv:hep-ph/0407360v1. [3] Gottlieb S, Liu W, Toussaint D, Renken R L and Sugar R L 1987 Phys. Rev. Lett. 59 2247 [4] Mclerran L 1987 Phys. Rev. D 36 3291 [5] Gavai R V, Potvin J and Sanielevici S 1989 Phys. Rev. D 40 2743 [6] Jeon S and Kocht V 2000 Phys. Rev. Lett. 85 2076 [7] Asakawa M, Heinz U and M\"{uller B 2000 Phys. Rev. Lett. 85 2072 [8] He D K, Jiang Y, Feng H T, Sun W M and Zong H S 2008 Chin. Phys. Lett. 25 440 [9] He M, He D K, Feng H T, Sun W M and Zong H S 2007 Phys. Rev. D 76 076005 [10] Kunihiro T 1991 Phys. Lett. B 271 395 [11] Fujii H 2003 Phys. Rev. D 67 094018 [12] Fujii H and Ohtani M 2004 Phys. Rev. D 70 014016 [13] Hatta Y and Ikeda T 2003 Phys. Rev. D 67 014028 [14] Chakraborty P, Mustafa M G and Thoma M H 2009 Phys. Rev. D 68 085012 [15] He M, Li J F, Sun W M and Zong H S 2009 Phys. Rev. D 79 036001 [16] D'Elia M and Lombardo M P 2003 Phys. Rev. D 67 014505 [17] Allton C R, D\"{oring M, Ejiri S, Hands S J, Kaczmarek O, Karsch F, Laermann E and Redlich K 2005 Phys. Rev. D 71 054508 [18] Gottlieb S, Liu W, Renken R L, Sugar R L and Toussaint D 1988 Phys. Rev. D 38 2888 [19] Gavai R V and Gupta S 2006 Phys. Rev. D 73 014004 [20] He D K, Ruan X X, Jiang Y, Sun W M and Zong H S 2009 Phys. Lett. B 680 432 [21] Zong H S and Sun W M 2008 Phys. Rev. D 78 054001 [22] He M, Sun W M, Feng H T and Zong H S 2007 J. Phys. G 34 2655 [23] Peshier A, Kampfer B, Pavlenko O P and Soff G 1994 Phys. Lett. B 337 235 [24] Gorenstein M I and Yang S N 1995 Phys. Rev. D 52 5206 [25] Peshier A, Kampfer B, Pavlenko O P and Soff G 1996 Phys. Rev. D 54 2399 [26] Peshier A, Kampfer B and Soff G 2000 Phys. Rev. D 61 045203 [27] Levai P and Heinz U W 1998 Phys. Rev. C 57 1879 [28] Schneider R A and Weise W 2001 Phys. Rev. C 64 055201 [29] Szabo K K and Toth A I 2003 J. High Energy Phys. 06 008 [30] Ivanov Y B, Skokov V V and Toneev V D 2005 Phys. Rev. D 71 014005 [31] Bannur V M 2007 Phys. Lett. B 647 271 [32] Wen X J, Zhong X H, Peng O X, Shen P N and Ning P Z 2005 Phys. Rev. C 72 015204 [33] Yin S Y and Su R K 2008 Phys. Rev. C 77 055204 [34] Fodor Z, Katz S D and Szabo K K 2003 Phys. Lett. B 568 73 [35] Letessier J and Rafelski J 2003 Phys. Rev. C 67 031902 [36] Schneider R A arXiv:hep-ph/0303104 [37] Halasz M A, Jackson A D, Shrock R E, Stephanov M A, Verbaarschot J J M 1998 Phys. Rev. D 58 096007 [38] Gottlieb S, Heller U M, Kennedy A D, Kim S, Kogut J B, Liu C, Renken R L, Sinclair D K, Sugar R L, Toussaint D and Wang K C 1997 Phys. Rev. D 55 6852 [39] Gavai R V and Gupta S 2001 Phys. Rev. D 64 074506 [40] Gavai R V, Gupta S and Majumdar P 2002 Phys. Rev. D 65 054506