Thermal Width for Heavy Quarkonium in the Static Limit
SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De**
Department of Physics, Yunnan University, Kunming 650091
Abstract :The thermal widths for heavy quarkonia are calculated for both Coulomb gauge (CG) and Feynman gauge (FG), and the comparisons between these results with the hard thermal loop (HTL) approximation ones are illustrated. The dissociation temperatures of heavy quarkonia in thermal medium are also discussed for CG, FG and HTL cases. It is shown that the thermal widths, derived from the HTL approximation and used in many research studies, cause some errors in the practical calculations at the temperature range accessible in the present experiment, and the problem of gauge dependence cannot be avoided when the complete self energy is used in the derivation of potential.
收稿日期: 2015-09-03
出版日期: 2016-01-05
[1] Matsui T and Satz H 1986 Phys. Lett. B 178 416
[2] Kasch F, Mehr M and Satz H 1988 Z. Phys. C 37 617
[3] Laine M, Philipsen O, Romatschke P and Tassler M 2007 J. High Energy Phys. 0703 054
[4] Laine M, Philipsen O and Tassler M 2007 J. High Energy Phys. 0709 066
[5] Beraudo A, Blaizot J P and Ratti C 2008 Nucl. Phys. A 806 312
[6] Laine M and Ratti C 2009 Nucl. Phys. A 820 25C
[7] Brambilla N, Ghiglieri J and Vatro A 2008 Phys. Rev. D 78 014017
[8] Riek F and Rapp R 2010 Phys. Rev. C 82 035201
[9] Margotta M, McCarty K, McGahan C, Strickland M and Yager-Elorriaga D 2011 Phys. Rev. D 83 105019
[10] Escobedo M A, Giannuzzi F, Mannarelli M and Soto J 2013 Phys. Rev. D 87 114005
[11] Anderson J O and Strickland M 2005 Ann. Phys. 317 281
[12] Zhu J Q, Ma Z L, Shi C Y and Li Y D 2015 Nucl. Phys. A 942 54
[13] Blaizot J P and Iancu E 2002 Phys. Rep. 359 355
[14] Klimov V V 1990 Sov. J. Nucl. Phys. 33 934
Klimov V V 1982 Sov. Phys. JETP 55 199
[15] Weldon H A 1982 Phys. Rev. D 26 1394
[16] Thoma M H 2002 Space Sci. Rev. 100 141
[17] Carrington M E, Hou D F and Thoma M H 1999 Eur. Phys. J. C 7 347
[18] Kapusta J I 1979 Nucl. Phys. B 148 461
[19] Kajantie K and Kapusta J I 1985 Ann. Phys. 160 477
[20] Heinz U, Kajantie K and Toimela T 1987 Ann. Phys. 176 218
[21] Strickland M and Bzaow D 2012 Nucl. Phys. A 879 25
[22] Zhu J Q and Li Y D 2015 Nucl. Phys. A 939 71
[23] Olive K A et al 2014 Chin. Phys. C 38 090001
[24] Kajantie K, Laine M, Rummukainen K and Shaposhnikov M 1997 Nucl. Phys. B 503 357
[25] Laine M and Schroder Y 2006 Phys. Rev. D 73 085009
[26] Petreczky P 2010 J. Phys. G 37 094009
[1]
. [J]. 中国物理快报, 2015, 32(11): 111101-111101.
[2]
. [J]. 中国物理快报, 2014, 31(06): 62501-062501.
[3]
. [J]. 中国物理快报, 2013, 30(9): 91202-091202.
[4]
. [J]. 中国物理快报, 2013, 30(6): 61201-061201.
[5]
. [J]. 中国物理快报, 2013, 30(4): 41201-041201.
[6]
JIA Duo-Jie;WANG Xiao-Wei;LIU Feng
. Analytical Solution for the SU(2) Hedgehog Skyrmion and Static Properties of Nucleons [J]. 中国物理快报, 2010, 27(12): 121201-121201.
[7]
WANG Xiao-Ming;ZHOU Bang-Rong. Complete Gluonic Phase in Two-Flavour Colour Superconductivity [J]. 中国物理快报, 2008, 25(4): 1235-1238.
[8]
CHANG Sheng;LIU Ji-Feng;ZHUANG Peng-Fei. Nucleon Mass Splitting at Finite Isospin Chemical Potential [J]. 中国物理快报, 2008, 25(1): 55-57.
[9]
G.R. Boroun; B. Rezaie. Calculation of the Longitudinal Structure Function from Regge-Like Behaviour of the Gluon Distribution Function in Leading Order Approximation at Low x [J]. 中国物理快报, 2007, 24(5): 1187-1190.
[10]
DONG Yu-Bing. Proton Spin Structure Functions and Quark--Hadron Duality [J]. 中国物理快报, 2006, 23(9): 2383-2386.
[11]
SHEN Zhen-Qi;ZHU Wei. Colour Dipole Picture for Deep Inelastic Scattering in the Collinear Factorization Scheme [J]. 中国物理快报, 2004, 21(10): 1896-1899.
[12]
SHEN Qi-Xing;YU Hong;LI De-Min. Possibility to Search for Isoscalar 1- + Exotic State in the Process J/ψ → ωVV [J]. 中国物理快报, 2001, 18(3): 347-348.
[13]
YU Hong;SHEN Qi-xing. Moment Analysis of Process J/ψ → ρηπ and 1-+ Exotic Hybrid [J]. 中国物理快报, 1999, 16(7): 484-486.
[14]
ZHU Wei;XUE Dali*. Antishadowing Corrections in the Evolution Equation of Quark Distributions [J]. 中国物理快报, 1994, 11(8): 465-468.