摘要InAlN/GaN heterojunction structures are grown on two-inch c-face(0001) sapphire substrates by metalorganic chemical vapour deposition. AlN and AlGaN interlayers are intentionally inserted into the structure to improve the electrical properties. The lowest sheet resistance of 359 Ω/sq and the highest room-temperature two-dimensional electron gas (2DEG) mobility of 1051 cm2 V-1s-1 is obtained in the structure with AlN thickness of 1.3 nm. The structure with AlN thickness of 2 nm exhibits the highest 2DEG concentration of 1.84×1013 cm-2. The sample with an AlGaN interlayer gives a smoother surface morphology compared to the one using an AlN interlayer, indicating potential applications of this technique in device fabrication.
Abstract:InAlN/GaN heterojunction structures are grown on two-inch c-face(0001) sapphire substrates by metalorganic chemical vapour deposition. AlN and AlGaN interlayers are intentionally inserted into the structure to improve the electrical properties. The lowest sheet resistance of 359 Ω/sq and the highest room-temperature two-dimensional electron gas (2DEG) mobility of 1051 cm2 V-1s-1 is obtained in the structure with AlN thickness of 1.3 nm. The structure with AlN thickness of 2 nm exhibits the highest 2DEG concentration of 1.84×1013 cm-2. The sample with an AlGaN interlayer gives a smoother surface morphology compared to the one using an AlN interlayer, indicating potential applications of this technique in device fabrication.
DONG Xun;LI Zhong-Hui;LI Zhe-Yang;ZHOU Jian-Jun;LI Liang;LI Yun;ZHANG Lan;XU Xiao-Jun;XU Xuan;HAN Chun-Lin. Effects of AlN and AlGaN Interlayer on Properties of InAlN/GaN Heterostructures[J]. 中国物理快报, 2010, 27(3): 37102-037102.
DONG Xun, LI Zhong-Hui, LI Zhe-Yang, ZHOU Jian-Jun, LI Liang, LI Yun, ZHANG Lan, XU Xiao-Jun, XU Xuan, HAN Chun-Lin. Effects of AlN and AlGaN Interlayer on Properties of InAlN/GaN Heterostructures. Chin. Phys. Lett., 2010, 27(3): 37102-037102.
[1] Palacios T, Chakraborty A, Heikman S, Keller, DenBaars S P and Mishra U K 2006 IEEE Electron. Device Lett. 27 13 [2] Yang L, Hao Y, Ma X H, Quan S, Hu G Z, Jiang S G and Yang L Y 2009 Chin. Phys. Lett. 26 117104 [3] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron. Device Lett. 25 117 [4] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334 [5] Cao Y and Jena D 2007 Appl. Phys. Lett. 90 182112 [6] Chowdhury U, Jimenez J L, Lee C, Beam E, Saunier P, Balistreri T, Park S Y, Lee T, Wang J, Kim M J, Joh J and Alamo J A 2008 IEEE Electron. Device Lett. 29 1098 [7] Kuzmik 2001 IEEE Electron. Device Lett. 22 510 [8] Medjdoub F, Carlin J F, Gaquiere C, Grandjean N and Kohn E 2008 Open Electrical Electronic Engin. J. 2 1 [9] Carlin J F, Zellweger C, Dorsaz J, Nicolay S, Christmann G, Feltin E, Butte R and Grandiean N 2005 Phys. Status Solidi B 242 2326 [10] Wang C, Wang X, Hu G, Wang J, Xiao H and Li J 2006 J. Cryst. Growth 289 414 [11] Sheu J K, Lee M L and Lai W C 2005 Appl. Phys. Lett. 86 052103