摘要By employing the first-principles pseudopotential plane-wave method, the physical properties of zincblende ZnO are investigated in comparison with those of the common wurtzite structure. Zincblende ZnO is predicted to be a direct gap semiconductor. Compared to the wurtzite structure, the zincblende ZnO is characterized by smaller bandgap and pressure coefficient, larger electron effective mass, increasing static dielectric constants and more covalent bonding. Furthermore, the optical properties including dielectric function and energy loss function of zincblende ZnO were obtained and analysed with some features. These aspects reveal promising applications of zincblende ZnO in optoelectronic devices.
Abstract:By employing the first-principles pseudopotential plane-wave method, the physical properties of zincblende ZnO are investigated in comparison with those of the common wurtzite structure. Zincblende ZnO is predicted to be a direct gap semiconductor. Compared to the wurtzite structure, the zincblende ZnO is characterized by smaller bandgap and pressure coefficient, larger electron effective mass, increasing static dielectric constants and more covalent bonding. Furthermore, the optical properties including dielectric function and energy loss function of zincblende ZnO were obtained and analysed with some features. These aspects reveal promising applications of zincblende ZnO in optoelectronic devices.
(Optical properties of bulk materials and thin films)
引用本文:
ZHANG Xin-Yu;CHEN Zhou-Wen;QI Yan-Peng;FENG Yan;ZHAO Liang;QI Li;MA Ming-Zhen;LIU Ri-Ping;WANG Wen-Kui. Ab Initio Comparative Study of Zincblende and Wurtzite ZnO[J]. 中国物理快报, 2007, 24(4): 1032-1034.
ZHANG Xin-Yu, CHEN Zhou-Wen, QI Yan-Peng, FENG Yan, ZHAO Liang, QI Li, MA Ming-Zhen, LIU Ri-Ping, WANG Wen-Kui. Ab Initio Comparative Study of Zincblende and Wurtzite ZnO. Chin. Phys. Lett., 2007, 24(4): 1032-1034.
[1] \"Ozg\"ur \"U et al 2005 J. Appl. Phys. 98 041301 andreferences therein [2] Ozoli\c n\v s V and Zunger A 1999 Phys. Rev. Lett. 82 767 [3] Ashrafi A B M A et al 2002 Appl. Phys. Lett. 76 5509 [4] Choopun S et al 2002 Appl. Phys. Lett. 80 1529 [5] Thareja R K, Saxena H and Narayanan V 2002 J. Appl. Phys. 98 034908 [6] Vashaei Z et al 2005 J. Appl. Phys. 98 054911 [7] Qiu D J, Wu H Z, Chen N B and Xu T N 2003 Chin. Phys. Lett. 20 582 [8] Segall M D et al 2002 J. Phys.: Cond. Matt. 14 2717 [9] Vanderbilt D 1990 Phys. Rev. B 41 7892 [10] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [11] Decremps F et al 2003 Phys. Rev. B 68 104101 [12] He J L et al 2005 Phys. Rev. Lett. 94 015504 [13] Kisi E and Elcombe M M 1989 Acta Crystallogr Sect. C: Cryst.Struct. Commun. C45 1867 [14] Powell R A, Spicer W E and McMenamin J C 1971 Phys. Rev.Lett. 27 97 [15] Powell R A, Spicer W E and McMenamin J C 1972 Phys.Rev. B 6 3056 [16] Vesely C J, Hengehold R L and Langer D W 1972 Phys.Rev. B 5 2296 [17] Ley L et al 1974 Phys. Rev. B 9 600 [18] Oshikiri M, Imanaka Y, Aryasetiawan F and Kido G 2001 Physica B 298 472 [19] Chen Z W, Lv M Y and Liu R P 2005 J. Appl. Phys. 98096105 [20] Chang K J, Froyen S and Cohen M L 1984 Solid StateComm. 50 105 [21] Segura A et al 2003 Appl. Phys. Lett. 83 278 [22] Hamann D R, Schluter M and Chiang C 1979 Phys. Rev. Lett. 43 1494 [23] Sun J et al 2004 Appl. Phys. Lett. 84 4544