Helical Shell Structures of Ni--Al Alloy Nanowires and Their Electronic Transport Properties
ZHANG Xue-Qing1, LI Hui1,2, LIEW Kim-Meow2, LI Yun-Fang1,SUN Feng-Wei1
1Department of Physics, Ocean University of China, Qingdao 2661002Department of Building and Construction, City University of Hong Kong, Kowloon, Hong Kong
Helical Shell Structures of Ni--Al Alloy Nanowires and Their Electronic Transport Properties
1Department of Physics, Ocean University of China, Qingdao 2661002Department of Building and Construction, City University of Hong Kong, Kowloon, Hong Kong
摘要Six kinds of Ni--Al alloy nanowires are optimized by means of simulated annealing. The optimized structures show that the Ni--Al alloy nanowires are helical shell structures that are wound by three atomic strands, which is very similar to the case with pure metallic nanowires. The densities of states (DOS), transmission function T(E), current--voltage (I-V) curves, and the conductance spectra of these alloy nanowires are also investigated. Our results indicate that the conductance spectra depend on the geometric structure properties and the ingredients of the alloy nanowires. We observe and study the nonlinear contribution to the I--V characteristics that are due to the quantum size effect and the impurity effect. The addition of Ni atoms decreases the conductance of the Ni--Al alloy nanowire because the doping atom Ni change the electronic band structures and the charge density distribution. The interesting statistical results shed light on the physics of quantum transport at the nano-scale.
Abstract:Six kinds of Ni--Al alloy nanowires are optimized by means of simulated annealing. The optimized structures show that the Ni--Al alloy nanowires are helical shell structures that are wound by three atomic strands, which is very similar to the case with pure metallic nanowires. The densities of states (DOS), transmission function T(E), current--voltage (I-V) curves, and the conductance spectra of these alloy nanowires are also investigated. Our results indicate that the conductance spectra depend on the geometric structure properties and the ingredients of the alloy nanowires. We observe and study the nonlinear contribution to the I--V characteristics that are due to the quantum size effect and the impurity effect. The addition of Ni atoms decreases the conductance of the Ni--Al alloy nanowire because the doping atom Ni change the electronic band structures and the charge density distribution. The interesting statistical results shed light on the physics of quantum transport at the nano-scale.
ZHANG Xue-Qing;LI Hui;LIEW Kim-Meow;LI Yun-Fang;SUN Feng-Wei. Helical Shell Structures of Ni--Al Alloy Nanowires and Their Electronic Transport Properties[J]. 中国物理快报, 2007, 24(6): 1701-1704.
ZHANG Xue-Qing, LI Hui, LIEW Kim-Meow, LI Yun-Fang, SUN Feng-Wei. Helical Shell Structures of Ni--Al Alloy Nanowires and Their Electronic Transport Properties. Chin. Phys. Lett., 2007, 24(6): 1701-1704.
[1] Horstemeyer M, Baskes M and Plimpton S J 2001 Acta Mater. 49 4363 [2] Golberg D, Mitome M, Muller Ch, Tang C, Leonhardt A and Bando Y2006 Acta Mater. 54 2567 [3] Klinger L and Rabkin E 2006 Acta Mater. 54 305 [4] Golberg D, Bando Y, Mitome M, Fushimi K and Tang C H 2004 ActaMater. 52 3295 [5] Adelung R, Hartung W and Ernst F 2002 Acta Mater. 504925 [6] Wang B L, Zhao J J, Shi D N, Jia J M and Wang G H 2005 Chin.Phys. Lett. 22 1195 [7] Peng L Q, Ju X, Wang S C, Xian D C, Chen H and He Y J 1999 Chin. Phys. Lett. 16 126 [8] Agrait N, Yeyati A L, and Ruitenbeek J M 2003 Phys. Rep. 377 81 [9] Rodrigues V, Bettini J, Rocha A R, Rego L G C, and Ugarte D2002 Phys. Rev. B 65 153402 [10] Smit R H M, Untiedt C, and Ruitenbeek J M 2004 Nanotechnology 15 S472 [11] Landman U, Luedtke W D, Burnham N and Colton R J 1990 Science 248 454 [12] Landman U, Luedtke W D and Gao J 1996 Langmuir 12 4514 [13] Makita T, Doi K, Nakamura K, and Tachibana A 2003 J. Chem.Phys. 119 538 [14] Tosatti E, Prestipino S, Kostlmeier S, Corso A D and Tolla F D D2001 Science 291 288 [15] Choi W Y, Kang J W and Hwang H J 2003 Phys. Rev. B 68193405 [16] Yanson A I, Bollinger G R, Brom H E, Agrait N and Ruitenbeek J M1998 Nature 395 783 [17] Rodrigues V, Bettini J, Silva P C and Ugarte D 2003 Phys.Rev. Lett. 91 096801 [18] Csonka S, Halbritter A, Mihaly G, Jurdik E, Shklyarevskii O I,Speller S and Kempen H 2003 Phys. Rev. Lett. 90 116803 [19] Li C Z, He H X, Bogozi A, Bunch J S and Tao N J 2000 Appl.Phys. Lett. 76 1333 [20] Yeyati A L, Rodero A M and Flores F 1997 Phys. Rev. B 56 10369 [21] Li J L, Kanzaki T, Murakoshi K and Nakato Y 2002 Appl. Phys.Lett. 81 123 [22] Kiguchi M, Konishi T and Murakoshi K 2005 Appl. Phys. Lett. 87 43104 [23] Ke S H, Yang W and Baranger H U 2006 J. Chem. Phys. 124 181102 [24] Cleri F and Rosato V 1993 Phys. Rev. B 48 22 [25] Gulseren O, Ercolessi F and Tosatti E 1998 Phys. Rev. Lett. 80 3775 [26] Datta S 1995 Electronic Transport in Mesoscopic Systems(Cambridge: Cambridge University Press) [27] Kondo Y and Takayanagi K 2000 Science 289 606 [28] Paulsson M and Stafstrom S 2001 Phys. Rev. B 64035416 [29] Nielsen S K, Brandbyge M, Ruitenbeek J M and Besenbacher F 2002 Phys. Rev. Lett. 89 066804 [30] Mehrez H, Wlasenko A, Larade B, Taylor J, Grutter P and Guo H 2002 Phys. Rev. B 65 195419 [31] Larade B, Taylor J, Mehrez H and Guo H 2001 Phys. Rev. B 64 075420 [32] Jalili S and Tabar H R 2005 Phys. Rev. B 71 165410