Transition Metal Silicide Nanowires Growth and Electrical Characterization
PENG Zu-Lin1, LIANG S.2, DENG Luo-Gen1
1School of Science, Beijing Institute of Technology, Beijing 1000812Science and Engineering of Materials Program, Arizona State University, Tempe, AZ, 85287, USA
Transition Metal Silicide Nanowires Growth and Electrical Characterization
PENG Zu-Lin1, LIANG S.2, DENG Luo-Gen1
1School of Science, Beijing Institute of Technology, Beijing 1000812Science and Engineering of Materials Program, Arizona State University, Tempe, AZ, 85287, USA
摘要We report the characterization of self-assembled epitaxially grown transition metal, Fe, Co, Ni, silicide nanowires (TM-NW) growth and electrical transport properties. NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm, and several micrometers in length. NW orientations strongly depend on substrate crystal orientation, and follow the substrate symmetry. By using conductive-AFM (c-AFM), the electron transport properties of one single NW were measured, the resistivity of crystalline nickel silicide NW was estimated to be 2×10-2Ω12539;cm.
Abstract:We report the characterization of self-assembled epitaxially grown transition metal, Fe, Co, Ni, silicide nanowires (TM-NW) growth and electrical transport properties. NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm, and several micrometers in length. NW orientations strongly depend on substrate crystal orientation, and follow the substrate symmetry. By using conductive-AFM (c-AFM), the electron transport properties of one single NW were measured, the resistivity of crystalline nickel silicide NW was estimated to be 2×10-2Ω12539;cm.
[1] Preinesberger C, Vandre S, Kalka T and Daehne-Prietsch M1998 J. Phys. D: Appl. Phys. 31 L43 [2] Kuzmin M, Laukkanen P, Perala R E, Vaara R L and VayrynenI J 2004 Appl. Surf. Sci. 222 394 [3] Liu B Z and Nogami J 2003 Surf. Sci. 540 136 [4] Chen Y, Ohlberg D A A and Williams R S 2001 Mater.Sci. Eng. B 87 222 [5] He Z, Smith D J and Bennett P A 2005 Appl. Phys.Lett. 86 143110 [6] Kavanagh K L, Reuter M C and Tromp R M 1997 J. Cryst.Growth 173 393 [7] He Z, Stevens M, Smith D J and Bennett P A 2005 Surf.Sci. 524 148 [8] Bennett P A, Ashcroft B, He Z and Tromp R M 2002 TheThird LEEM/PEEM Workshop, AVS, 2500 [9] Chen L J 2004 in Processing, edited by Weiss B L(The Institution of Electrical Engineers, London, United Kingdom) p5 [10] Wu Y, Xiang J, Yang C, Lu W and Lieber C M 2004 Nature 430 61 [11] Wan Q, Wang T H and Lin C L 2003 Appl. Phys. Lett. 82 3224 [12] Bost M C and Mahan J E 1985 J. Appl. Phys. 582696 [13] Liang S, Islam R, Smith D J, Bennett P A, O'Brien J R andTaylor B 2006 Appl. Phys. Lett. 88 113111 [14] Peng Z L and Liang S 2008 Chin. Phys. Lett. 25 4113 [15] He Z, Smith D J and Bennett P A 2004 Phys. Rev.Lett. 93 256102 [16] Wilms M, Conrad J, Vasilev K and Kreiter G 2004 App.Surf. Sci. APHYS'03 Special Issue 238 490 [17] Marzi G D, Iacopino D, Quinn A J and Redmond G 2004 J. Appl. Phys. 96 3458 [18] Okino H, Matsuda I, Hobara R, Hosomura Y, Hasegawa S andBennett P A 2005 Appl. Phys. Lett. 86 233108 [19] Comrie C M, Falepin A, Richard O and Bender H 2004 J. Appl. Phys. 95 2365 [20] Lee K S, Mo Y H, Nahm K S, Shim H W, Suh E K, Kim J R andKim J J 2004 Chem. Phys. Lett. 384 215 [21] Konstantinidis D A and Aifantis E C 1998 Nanostruct.Mater. 10 1111