Low-Dimensional Forest-Like and Desert-Like Fractal Patterns Formed in a DDAN Molecular System
CAI Jin-Ming1, BAO Li-Hong1, GUO Wei1, CAI Li1, HUAN Qing1, LIAN Ji-Chun1, GUO Hai-Ming1, WANG Ke-Zhi2, SHI Dong-Xia1, PANG Shi-Jin1, GAO Hong-Jun1
1Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 1000802Department of Chemistry, Beijing Normal University, Beijing 100871
Low-Dimensional Forest-Like and Desert-Like Fractal Patterns Formed in a DDAN Molecular System
1Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 1000802Department of Chemistry, Beijing Normal University, Beijing 100871
摘要Two kinds of forest-like and desert-like patterns are formed by thermal evaporation of 4-dicyanovinyl-N, N-dimethylamino-1-naphthalene (DDAN) onto SiO2 substrates. Based on thermal kinetics of the molecules on the substrate the transformation between the forest and desert patterns is due to two factors. The first one is the diffusion length, which is related to the deposition rate, the diffusion potential energy barrier and the substrate temperature. The second one is the strong interaction between the two polarity chemical groups of the molecules, which is beneficial to the formation of branches. Totally different patterns are also found on mica substrates, and are attributed to the anisotropic diffusion and the stronger interaction between DDAN molecules and the mica surface.
Abstract:Two kinds of forest-like and desert-like patterns are formed by thermal evaporation of 4-dicyanovinyl-N, N-dimethylamino-1-naphthalene (DDAN) onto SiO2 substrates. Based on thermal kinetics of the molecules on the substrate the transformation between the forest and desert patterns is due to two factors. The first one is the diffusion length, which is related to the deposition rate, the diffusion potential energy barrier and the substrate temperature. The second one is the strong interaction between the two polarity chemical groups of the molecules, which is beneficial to the formation of branches. Totally different patterns are also found on mica substrates, and are attributed to the anisotropic diffusion and the stronger interaction between DDAN molecules and the mica surface.
CAI Jin-Ming;BAO Li-Hong;GUO Wei;CAI Li;HUAN Qing;LIAN Ji-Chun;GUO Hai-Ming;WANG Ke-Zhi;SHI Dong-Xia;PANG Shi-Jin;GAO Hong-Jun. Low-Dimensional Forest-Like and Desert-Like Fractal Patterns Formed in a DDAN Molecular System[J]. 中国物理快报, 2007, 24(10): 2918-2921.
CAI Jin-Ming, BAO Li-Hong, GUO Wei, CAI Li, HUAN Qing, LIAN Ji-Chun, GUO Hai-Ming, WANG Ke-Zhi, SHI Dong-Xia, PANG Shi-Jin, GAO Hong-Jun. Low-Dimensional Forest-Like and Desert-Like Fractal Patterns Formed in a DDAN Molecular System. Chin. Phys. Lett., 2007, 24(10): 2918-2921.
[1] Forrest S R 1997 Chem. Rev. 97 1793 [2] O'Neil M P, Niemczyk M P, Svec W A, Gosztola D, Gaines G L andWasielewski M R 1992 Science 257 63 [3] Mandelbrot B B 1982 Fractal Geometry of Nature (New York:Freeman) [4] Li C R, Zhang X N and Cao Z X 2005 Science 309 909 [5] Gao H J et al %, Sohlberg K, Xue Z Q, Chen H Y, Hou S M, Ma%L P, Fang X W, Pang S J and Pennycook S J2000 Phys. Rev.Lett. 84 1780 [6] Shi D X, Wang Y L, Zhang H X, Jiang P, He S T, Pang S J and Gao H J2000 Appl. Phys. Lett. 77 3203 [7] Shi D X, Song Y L, Zhu D B and Gao H J 2001 Adv. Mater. 13 1103 [8] Feng M et al %, Guo X F, Lin X, He X B, Ji W, Du S X, Zhang D Q, Zhu D B%and Gao H J2005 J. Am. Chem. Soc. 127 15338 [9] Gao H J, Canright G S, Pang S J et al 1998 Fractals 6 337 [10] Sandler I M, Canright G S, Zhang Z Y et al 1998 Phys.Rev. A 245 233 [11] Service R F 2001 Science 293 1746 [12] Zhang Z Y and Lagally M G 1997 Science 276 377 [13] Witten T A and Sander L M 1981 Phys. Rev. Lett. 471400 [14] Brechignac C et al %, Cahuzac P, Carlier F, Colliex C,%Leroux J, Masson A, Yoon B and Landman U2002 Phys. Rev. Lett. 88 196103 [15] Wang M et al %, Liu X Y, Strom C S, Bennema P, van%Enckevort W and Ming N B1998 Phys. Rev. Lett. 80 3089 [16] Wang Y L et al %, Gao H J, Guo H M, Wang S and Pantelides S T2005 Phys. Rev. Lett. 94 106101 [17] Gao L et al%, Deng Z T, Ji W, Lin X, Cheng Z H, He X B, Shi D X and Gao H J2006 Phys. Rev. B 73 075424 [18] Shi D X, Ji W, Lin X, He X B, Lian J C, Gao L et al 2006 Phys. Rev. Lett. 96 226106 [19] Du S X, Gao H J and Seidel C 2006 Phys. Rev. Lett. 97156105 [20] Ravagnan L et al %, Siviero F, Lenardi C, Piseri P,%Barborini E, Milani P, Casari C S, Li Bassi A and Bottani C E2002 Phys. Rev. Lett. 89 285506 [21] Liu B G, Wu J, Wang E G and Zhang Z Y 1999 Phys.Rev. Lett. 83 1195 [22] Krause B et al %, Durr A C, Ritley K, Schreiber F, Dosch H%and Smilgies D2002 Phys. Rev. B 66 235404 [23] Gao H J, Xue Z Q, Wang K Z, Wu Q D and Pang S J 1996 Appl.Phy. Lett. 68 2192 [24] Gao H J, Xue Z Q, Wu Q D and Pang S J 1995 J. Vacuum Sci.Technol. B 13 1242 [25] Melby C R et al 1962 J. Am. Chem. Soc. 84 3374 [26] Carroll R L and Gorman C B 2002 Angew. Chem. Int. Ed. 41 4378 [27] Grabowski Z R, Rotkiewicz K and Rettig W 2003 Chem.Rev. 103 3899 [28] Bosch P et al %, Fernandez-Arizpe A, Mateo J L, Catalina F and%Peinado C2002 J. Photochem. Photobiol. A: Chem. 153 135 [29] Bosch P et al %, Fernandez-Arizpe A, Mateo J L, Lozano A E and%Noheda P2000 J. Photochem. Photobiol. A: Chem. 133 51 [30] Hakala K et al %, Vatanparast R, Li S Y, Peinado C, Bosch%P, Catalina F and Lemmetyinen H2000 Macromolecules 33 5954 [31] Wu H M, Song Y L, Du S X, Liu H W, Gao H J,Jiang L and Zhu D B 2003 Adv. Meter. 15 1925 [32] Wen Y Q, Song Y L, Gao H J et al 2004 Adv. Mater. 16 2018 [33] Jiang G Y, Feng M, Wen Y Q, Du S X, Gao H J et al 2005 Adv. Mater. 17 2170 [34] Ruiz R et al 2004 Chem. Mater. 16 4497 [35] Hartman H, Sposito G and Yang A 1990 Clays and Clay Minerals 38 337