摘要Morphologies of Cu(111) films on Si(111)-7×7 surfaces prepared at low temperature are investigated by scanning tunnelling microscopy (STM) and reflection high-energy electron diffraction (RHEED). At the initial growth stage, Cu films are flat due to the formation of silicide at the interface that decreases the mismatch between Cu films and the Si substrate. Different from the usual multilayer growth of Cu/Cu(111), on the silicide layer a layer-by-layer growth is observed. The two dimensional (2D) growth is explained by the enhanced high island density at low deposition temperature. Increasing deposition rate produces films with different morphologies, which is the result of Ostwald ripening.
Abstract:Morphologies of Cu(111) films on Si(111)-7×7 surfaces prepared at low temperature are investigated by scanning tunnelling microscopy (STM) and reflection high-energy electron diffraction (RHEED). At the initial growth stage, Cu films are flat due to the formation of silicide at the interface that decreases the mismatch between Cu films and the Si substrate. Different from the usual multilayer growth of Cu/Cu(111), on the silicide layer a layer-by-layer growth is observed. The two dimensional (2D) growth is explained by the enhanced high island density at low deposition temperature. Increasing deposition rate produces films with different morphologies, which is the result of Ostwald ripening.
SHEN Quan-Tong;SUN Guo-Feng;LI Wen-Juan;DONG Guo-Cai;HAN Tie-Zhu;MA Da-Yan;SUN Yu-Jie;JIA Jin-Feng;XUE Qi-Kun;. Growth of Cu Films on Si(111)-7×7 Surfaces at Low Temperature: A Scanning Tunnelling Microscopy Study[J]. 中国物理快报, 2007, 24(11): 3214-3217.
SHEN Quan-Tong, SUN Guo-Feng, LI Wen-Juan, DONG Guo-Cai, HAN Tie-Zhu, MA Da-Yan, SUN Yu-Jie, JIA Jin-Feng, XUE Qi-Kun,. Growth of Cu Films on Si(111)-7×7 Surfaces at Low Temperature: A Scanning Tunnelling Microscopy Study. Chin. Phys. Lett., 2007, 24(11): 3214-3217.
[1] Aballe L, Rogero C and Horn K 2002 Phys. Rev. B 65125319 [2] Liu Hong, Zhang Y F, Wang D Y, Pan M H, Jia J F and Xue Q K2004 Surf. Sci. 571 5 [3] Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q andXue Q K 2005 Phys. Rev. Lett. 95 096802 [4] Rossi G and Lindau I 1983 Phys. Rev. B 28 3597 [5] Walker F J, Specht E D and Mckee R A 1991 Phys. Rev.Lett. 67 2818 [6] Daugy E, Mathiez P, Salvan F and Layet J M 1985 Surf.Sci. 154 267 [7] Bootsman T I M and Hibma T 1995 Surf. Sci. 331-333 636 [8] Pedersen K, Kristensen T B, Pederser T G, Morgen P, Li Z andHoffman S V 2002 Phys. Rev. B 66 153406 [9] Solberg J K 1978 Acta Cryst. A 34 684 [10] van der Vegt H A, van Pinxteren H M, Lohmeier M and Vlieg E 1992 Phys. Rev. Lett. 68 3335 [11] Rosenfeld G, Servaty R, Teichert C, Poelsma B and Comsa G 1993 Phys. Rev. Lett. 71 895 [12] Dastoor P C, Ellis J, Reichmuth A, Bullman H, Holst B and AllisonW 1994 Surf. Rev. Lett. 1 509 [13] Wulfhekel W, Lipkin N N, Kliewer J, Rofenfeld G, Jorritsma L C,Poelsema B, Comsa G 1996 Surf. Sci. 348 227 [14] Lewis B and Campell D S 1967 J. Vac. Sci. Technol. 4 209 Venables J A 1973 Phil. Mag. 27 697 Venables J A, Spiller G D T and Hanbcken M 1984 Rept. Prog. Phys. 47 399 Zhang Z and Lagally M G 1997 Science 276 377 [15] Ostwald W 1900 Z. Phys. Chem. Stoechiom.Verwandtschaftsl 34 495 Smoluchowski M Von 1916 Phys. Z 17 585 [16] Zinke-Allmang M, Feldman L C, and Grabow M H 1992 Surf. Sci.Rep. 16 377 [17] Wen J M, Chang S L, Burnett J W, Evans J W and Thiel P A 1994 Phys. Rev. Lett. 73 2591 Wen J M, Evans J W, Bartelt M C, Burnett J W and Thiel P A 1996 Phys. Rev. Lett. 76 652 [18] Icking-Konert G S, Giesen M and Ibach H 1998 Surf. Sci. 398 37