摘要We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.
Abstract:We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.
[1] van der Wiel W G, De Franceschi S, Elzerman J M,Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1 [2] Blick R H et al 1998 Phys. Rev. Lett. 80 4032 Schedelbeck G et al 1997 Science 278 1792 Oosterkamp T H et al 1998 Nature 395 873 Jeong H et al 2001 Science 293 2221 [3] Chen J C, Chang A M and Melloch M R 2004 Phys. Rev. Lett. 92 176801 Holleitner A W et al 2002 Science 297 70 Holleitner A W et al 2001 Phys. Rev. Lett. 87 256802 [4]Georges A and Meir Y 1999 Phys. Rev. Lett. 82 3508 [5] Aguado R and Langreth D C 2000 Phys. Rev. Lett. 85 1946 [6] L\'opez R, Aguado R and Platero G 2002 Phys. Rev. Lett. 89 136802 [7] Borda L, Zar\'and G, Hofstetter W, Halperin B Iand Delft J V 2003 Phys. Rev. Lett. 90 026602 [8] Galpin M R, Logan D E and Krishnamurthy H R 2005 Phys. Rev. Lett. 94 186406 [9] Martins G B, B\"usser C A, Al-Hassanieh K A,Moreo A and Dagotto E 2005 Phys. Rev. Lett. 94 026804 [10] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71205313 [11] Wilson K G 1975 Rev. Mod. Phys. 47 773 [12] Krishna-Murthy H R, Wilkins J W and Wilson K G1980 Phys. Rev. B 21 1003 Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys.Rev. B 21 1044 [13] Costic T A, Hewson A C and Zlati\'c V 1994 J.Phys. Condens. Matter 6 2519 [14] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601 [15] Izumida W, Sakai O and Tarucha S 2001 Phys. Rev. Lett. 87 216803