1Zhejiang University of Water Resources and Electric Power, Hangzhou 310018 2Zhejiang Provincial Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027 3Department of Physics, Hangzhou Normal University, Hangzhou 310036
Abstract:We present low-temperature magnetization, magnetoresistance and specific heat measurements on the Kondo lattice compound CePt$_{3}$P under applied magnetic fields up to 9.0 T. At zero field, CePt$_{3}$P exhibits a moderately enhanced Sommerfeld coefficient of electronic specific heat $\gamma_{\rm Ce}=86$ mJ/mol$\cdot$K$^{2}$ as well as two successive magnetic transitions of Ce 4$f$ moments: an antiferromagnetic ordering at $T_{\rm N1}=3.0$ K and a spin reorientation at $T_{\rm N2}=1.9$ K. The value of $T_{\rm N1}$ shifts to lower temperature as magnetic field increases, and it is ultimately suppressed around $B_{\rm c}\sim 3.0$ T at 1.5 K. No evidence of non-Fermi liquid behavior is observed around $B_{\rm c}$ down to the lowest temperature measured. Moreover, $\gamma$ decreases monotonously with increasing the magnetic field. On the other hand, the electrical resistivity shows an anomalous temperature dependence $\rho\propto T^{n}$ with the exponent $n$ decreasing monotonously from $\sim$2.6 around $B_{\rm c}$ down to $\sim$1.7 for $B=9.0$ T. The $T$–$B$ phase diagram constructed from the present experimental results of CePt$_{3}$P does not match the quantum criticality scenario of heavy fermion systems.