摘要Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov--Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system. The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux. Our results show that this system can provide an excellent spin filtering property, and a large tunnelling magnetoresistance can arise by adjusting the system parameters, which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.
Abstract:Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov--Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system. The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux. Our results show that this system can provide an excellent spin filtering property, and a large tunnelling magnetoresistance can arise by adjusting the system parameters, which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.
WU Shao-Quan;SUN Wei-Li. Fano versus Kondo Resonances in a Closed Aharonov--Bohm Interferometer Coupled to Ferromagnetic Electrodes[J]. 中国物理快报, 2007, 24(4): 1054-1057.
WU Shao-Quan, SUN Wei-Li. Fano versus Kondo Resonances in a Closed Aharonov--Bohm Interferometer Coupled to Ferromagnetic Electrodes. Chin. Phys. Lett., 2007, 24(4): 1054-1057.
[1] Fano U 1961 Phys. Rev. 124 1866 [2] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge:Cambridge University Press) [3] Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, MeiravU and Kastner M A 1998 Nature 391 156 Cronenwett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540 [4] G\"ores J, Goldhaber-Gordon D, Heemeyer S and Kastner M A 2000 Phys. Rev. B 62 2188 Zacharia I G, Goldhaber-Gordon D, Granger G, Kastner M A and Khain Y B2000 cond-mat/0009140 [5] Hofstetter W, K\"onig J and Schoeller H 2001 Phys. Rev. Lett. 87 156803 Bulla B R and Stefanski P 2001 Phys. Rev. Lett. 86 5128 Gao Y F, Zhang Y P and Liang J Q 2004 Chin. Phys. Lett. 21 2093 [6] Trio M E, Hallberg K, Ceccatto A H and Proetto C R 2002 Phys. Rev. B 65 085302 Kang K, Cho S Y, Kim J and Shin S 2001 Phys. Rev. B 63 113304 Xiong Y J and He Z B 2004 Chin. Phys. Lett. 21 1802 [7] Wu S Q and Wang S J 2003 Chin. Phys. Lett. 20 1574 Chen X W, Wu S Q, Wang P and Sun W L 2004 Chin. Phys. Lett. 21911 [8] Prinz G A 1998 Science 282 1660 Wolf S A, Awschalom D D, Buhrman R A, Daughton M, Molnar S V, Roukes ML, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [9] Chi F and Li S S 2005 Chin. Phys. Lett. 22 2035 Zhou B,Chen X W, Li T, Nie Y M and Wu S Q 2005 Chin. Phys. Lett. 22 2918 Chen X W et al 2006 Chin. Phys. Lett. 23 439 [10] Martinek J, Utsumi Y, Imamura H, Barnas J, Maekawa S, K\"onig J andSch\"on G 2003 Phys. Rev. Lett. 91 127203 [11] Sergueev N, Sun Q F, Guo H,Wang B G and Wang J 2002 Phys. Rev. B 65 165303 [12] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512 Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528 [13] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 702601 Hu D S, Zhang G P and Xiong S J 2000 Chin. Phys. Lett. 19 1850 [14] Ng T K 1993 Phys. Rev. Lett. 70 3635 [15] Gerland U, Delft J V, Costi T A and Oreg Y 2000 Phys.Rev. Lett. 84 3710