A. Yildiz1, S. B. Lisesivdin2, S. Acar2, M. Kasap2, M. Bosi3
1Department of Physics, Ahi Evran University, Kirsehir, Turkey2Department of Physics, Faculty of Science and Arts, University of Gazi, Teknikokular, 06500 Ankara, Turkey3CNR-IMEM Institute, Area delle Scienze 37/A, I-43010 Fontanini, Parma, Italy
Electron Transport in Ga-Rich InxGa1-xN Alloys
A. Yildiz1;S. B. Lisesivdin2;S. Acar2;M. Kasap2;M. Bosi3
1Department of Physics, Ahi Evran University, Kirsehir, Turkey2Department of Physics, Faculty of Science and Arts, University of Gazi, Teknikokular, 06500 Ankara, Turkey3CNR-IMEM Institute, Area delle Scienze 37/A, I-43010 Fontanini, Parma, Italy
摘要Resistivity and Hall effect measurements on n-type undoped Ga-rich InxGa1-xN (0.06≤x≤e 0.135) alloys grown by metal-organic vapour phase epitaxy (MOVPE) technique are carried out as a function of temperature (15--350K). Within the experimental error, the electron concentration in InxGa1-xN alloys is independent of temperature while the resistivity decreases as the temperature increases. Therefore, InxGa1-xN (0.06≤x≤0.135) alloys are considered in the metallic phase near the Mott transition. It has been shown that the temperature-dependent metallic conductivity can be well explained by the Mott model that takes into account electron--electron interactions and weak localization effects.
Abstract:Resistivity and Hall effect measurements on n-type undoped Ga-rich InxGa1-xN (0.06≤x≤e 0.135) alloys grown by metal-organic vapour phase epitaxy (MOVPE) technique are carried out as a function of temperature (15--350K). Within the experimental error, the electron concentration in InxGa1-xN alloys is independent of temperature while the resistivity decreases as the temperature increases. Therefore, InxGa1-xN (0.06≤x≤0.135) alloys are considered in the metallic phase near the Mott transition. It has been shown that the temperature-dependent metallic conductivity can be well explained by the Mott model that takes into account electron--electron interactions and weak localization effects.
A. Yildiz;S. B. Lisesivdin;S. Acar;M. Kasap;M. Bosi. Electron Transport in Ga-Rich InxGa1-xN Alloys[J]. 中国物理快报, 2007, 24(10): 2930-2933.
A. Yildiz, S. B. Lisesivdin, S. Acar, M. Kasap, M. Bosi. Electron Transport in Ga-Rich InxGa1-xN Alloys. Chin. Phys. Lett., 2007, 24(10): 2930-2933.
[1] Nakamura S and Fasol G 1997 The Blue Laser Diode (Berlin:Springer) [2] Nakamura S et al 1996 Jpn. J. Appl. Phys. 35 L74 [3] Akasaki I et al 1996 Electron. Lett. 32 1105 [4] Liu J et al 2007 IEEE Trans. Electron Devices 54 2 [5] Kumakura K et al 2003 J. Appl. Phys. 93 3370 [6] Lin S K et al 2005 J. Appl. Phys. 97 046101 [7] Chang C A 2004 Appl. Phys. Lett. 85 6131 [8] Wang C et al 2004 Jpn. J. Appl. Phys. 43 3356 [9] Zhu X L et al 2006 Chin. Phys. Lett. 23 3369 [10] Bosi M and Fornari R 2004 J. Cryst. Growth 265 434 [11] Dai P, Zhang Y and Sarachik M P 1992 Phys. Rev. B 453984 [12] Mott N F 1990 Metal--Insulator Transitions (London: Taylor\& Francis) [13] Leigthon C, Terry I and Becla P 1998 Phys. Rev. B 589773 [14] Thomas G A et al 1982 Phys. Rev. B 26 2113 [15] Kennedy T A et al 1999 MRS Internet J. Nitride Semicond.Res. 4S1 G7.4 [16] Hickey B J, Greig D and Howson M A 1987 Phys. Rev. B 36 3074