Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes
LI Li-Juan1, ZHAO Ming-Wen2, JI Yan-Ju3, LI Feng4, LIU Xiang-Dong2
1School of Engineering, Shandong Institute of Commerce and Technology, Jinan 250103 2School of Physics, Shandong University, Jinan 250100 3School of Science, Shandong Jianzhu University, Jinan 250101 4School of Physics and Electronic Engineering, Taishan University, Taian 271021
Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes
LI Li-Juan1, ZHAO Ming-Wen2, JI Yan-Ju3, LI Feng4, LIU Xiang-Dong2
1School of Engineering, Shandong Institute of Commerce and Technology, Jinan 250103 2School of Physics, Shandong University, Jinan 250100 3School of Science, Shandong Jianzhu University, Jinan 250101 4School of Physics and Electronic Engineering, Taishan University, Taian 271021
We report the formation energies of wurtzite zinc oxide (w-ZnO) nanowires (NWs) and nanotubes (NTs) with faceted morphologies, and show that hexagonal NWs (h-NWs) are energetically advantageous over the NWs with rhombic (r-), squared (s-), and triangular (t-) cross sections. The formation energies of h-NWs are proportional to the inverse of wire radius, whereas those of single-crystalline NTs are proportional to the inverse of wall thickness, irrespectively to tube radius. A simple model is presented to interpret these features.
We report the formation energies of wurtzite zinc oxide (w-ZnO) nanowires (NWs) and nanotubes (NTs) with faceted morphologies, and show that hexagonal NWs (h-NWs) are energetically advantageous over the NWs with rhombic (r-), squared (s-), and triangular (t-) cross sections. The formation energies of h-NWs are proportional to the inverse of wire radius, whereas those of single-crystalline NTs are proportional to the inverse of wall thickness, irrespectively to tube radius. A simple model is presented to interpret these features.
LI Li-Juan;ZHAO Ming-Wen;JI Yan-Ju;LI Feng;LIU Xiang-Dong. Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes[J]. 中国物理快报, 2010, 27(8): 86105-086105.
LI Li-Juan, ZHAO Ming-Wen, JI Yan-Ju, LI Feng, LIU Xiang-Dong. Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes. Chin. Phys. Lett., 2010, 27(8): 86105-086105.
[1] Wang Z L and Song J H 2006 Science 312 242 [2] Wang Z L 2004 J. Phys.: Condens. Matter 16 R829 [3] Bao D, Gu H and Kuang A 1998 Thin Solid Films 312 37 [4] Kong X Y, Ding Y, Yang R and Wang Z L 2004 Science 303 1348 [5] Kong X Y and Wang Z L 2003 Nano Lett. 3 1625 [6] Pan Z W, Dai Z R and Z L Wang 2001 Science 291 1947 [7] Gao P X and Wang Z L 2003 J. Am. Chem. Soc. 125 11299 [8] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R and Yang P D 2001 Science 292 1897 [9] Wen B M, Huang Y Z and Boland J J 2008 J. Phys. Chem. C 112 106 [10] Fan W, Xu H, Rosa A L, Frauenheim Th and Zhang R Q 2007 Phys. Rev. B 76 073302 [11] Li C, Guo W L, Kong Y and Gao H 2007 Phys. Rev. B 76 035322 [12] Wang B L and Zhao J J 2008 Appl. Phy. Lett. 93 021918 [13] Tu Z C and Hu X 2006 Phys. Rev. B 74 035434 [14] Shen X, Allen P B, Muckerman J T, Davenport J W and Zheng J 2007 Nano Lett. 7 2267 [15] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Oxford University) [16] Evjen H M 1932 Phys. Rev. 39 675 [17] Parry D E 1975 Surf. Sci. 49 433 [18] Parry D E 1976 Surf. Sci. 54 195 [19] Saunders V R, Freyia-Fava C, Dovesi R and Roetti C 1994 Comp. Phys. Commun. 84 156 [20] Wolf D, Keblinski P, Philpot S R and Eggebrecht J 1999 J. Chem. Phys. 110 8254 [21] Dick B G and Overhauser A W 1958 Phys. Rev. B 112 90 [22] Harding J H 1990 Rep. Prog. Phys. 53 1403 [23] Gale J D 1997 J. Chem. Soc. Faraday Trans. 93 629 [24] Whitmore L, Sokol A A and Catlow C R A 2002 Surf. Sci. 498 135 [25] Wang R M, Xing Y J, Xu J and Yu D P 2003 New J. Phys. 5 115 [26] Wander A and Harrison N M 2000 Surf. Sci. Lett. 468 851