Maximal Coordinator Number of Potassium, Rubidium, Caesium and Francium Ions in Gaseous Water
MANG Chao-Yong1, WU Ke-Chen2
1Institute of Eastern-Himalaya Biodiversity Research, College of Life Science and Chemistry, Dali University, Dali 671000 2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
Maximal Coordinator Number of Potassium, Rubidium, Caesium and Francium Ions in Gaseous Water
MANG Chao-Yong1, WU Ke-Chen2
1Institute of Eastern-Himalaya Biodiversity Research, College of Life Science and Chemistry, Dali University, Dali 671000 2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
To understand the molecular and electronic structure of alkali metal ions, we carry out the MP2 calculation and demonstrate that the maximal coordinator numbers for the hydrated K+ and Rb+ are 8, while those for the hydrated Cs+ and Fr+ are 10. Furthermore, on the basis of the binding energy, the HOMO-LUMO gap and the electron affinity, the stability of the molecular and electronic structures of M+(H2O)8 (M = K, Rb, Cs, Fr) decreases with the increasing alkali metal atomic number and the stability of the molecular structures of M+(H2O)8-10 (M = Cs, Fr) decreases with the increasing cluster size.
To understand the molecular and electronic structure of alkali metal ions, we carry out the MP2 calculation and demonstrate that the maximal coordinator numbers for the hydrated K+ and Rb+ are 8, while those for the hydrated Cs+ and Fr+ are 10. Furthermore, on the basis of the binding energy, the HOMO-LUMO gap and the electron affinity, the stability of the molecular and electronic structures of M+(H2O)8 (M = K, Rb, Cs, Fr) decreases with the increasing alkali metal atomic number and the stability of the molecular structures of M+(H2O)8-10 (M = Cs, Fr) decreases with the increasing cluster size.
[1] Feller D 1995 J. Chem. Phys. 103 3526 [2] Glendening E D and Feller D 1995 J. Phys. Chem. 99 3060 [3] Glendening E D 1996 J. Am. Chem. Soc. 118 2473 [4] Feller D 1997 J. Phys. Chem. A 101 2723 [5] Lee H M 1999 J. Chem. Phys. 111 3995 [6] Merrill G N 2003 J. Phys. Chem. A 107 386 [7] Tanaka M and Aida M 2004 J. Solution Chem. 33 887 [8] Lee H M et al 2004 J. Phys. Chem. A 108 2949 [9] Thomas M et al 2007 Biophys. J. 93 2635 [10] Rao J S et al 2008 J. Phys. Chem. A 112 12944 [11] Glendening E D et al 1994 J. Am. Chem. Soc. 116 10657 [12] Jungwon P et al 2004 J. Chem. Phys. 121 3108 [13] Kolaski M et al 2007 J. Chem. Phys. 126 074302 [14] Varma S and Rempe S B 2007 Biophys. J. 93 1093 [15] Roothan C C J 1951 Rev. Mod. Phys. 23 69 [16] Moller C and Plesset M S 1934 Phys. Rev. 46 618 [17] Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270 [18] Wadt W R and Hay P J 1985 J. Chem. Phys. 82 284 [19] Hay P J and Wadt W R 1985 J. Chem. Phys. 82 299 [20] Ermler W C et al 1991 Int. J. Quant. Chem. 40 829 [21] Boys S F and Bernardi F 1970 Mol. Phys. 19 553 [22] Frisch M J et al 2003 Gaussian 03 (Gaussian Inc., Pittsburgh, PA) [23] Selinger A and Castleman A W 1991 J. Phys. Chem. 95 8442 [24] An H L et al 2008 Chin. Phys. Lett. 25 3165 [25] Singh N J et al 2006 Theor. Chem. Acc. 115 127 [26] Singh N J et al 2007 Supramol. Chem. 19 321