Strain-Enabled Control of Chiral Magnetic Structures in MnSeTe Monolayer
Zhiwen Wang1,2, Jinghua Liang2, and Hongxin Yang1,2*
1National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract:Chiral magnetic states are promising for future spintronic applications. Recent progress of chiral spin textures in two-dimensional magnets, such as chiral domain walls, skyrmions, and bimerons, have been drawing extensive attention. Here, via first-principles calculations, we show that biaxial strain can effectively manipulate the magnetic parameters of the Janus MnSeTe monolayer. Interestingly, we find that both the magnitude and the sign of the magnetic constants of the Heisenberg exchange coupling, Dzyaloshinskii–Moriya interaction and magnetocrystalline anisotropy can be tuned by strain. Moreover, using micromagnetic simulations, we obtain the distinct phase diagram of chiral spin texture under different strains. Especially, we demonstrate that abundant chiral magnetic structures including ferromagnetic skyrmion, skyrmionium, bimeron, and antiferromagnetic spin spiral can be induced in the MnSeTe monolayer. We also discuss the effect of temperature on these magnetic structures. The findings highlight the Janus MnSeTe monolayer as a good candidate for spintronic nanodevices.
Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G, and Givord D 2017 Nano Lett.17 3006
[10]
Yu X, Morikawa D, Nakajima K, Shibata K, Kanazawa N, Arima T, Nagaosa N, and Tokura Y 2020 Sci. Adv.6 eaaz9744
[11]
Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu J, and Zhao Y 2021 Nat. Commun.12 322
Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovács A, Zang J D, Tian M L, Zhang Y H, Du H F, and Dunin-Borkowski R E 2017 Phys. Rev. Lett.119 197205
Luchaire C M, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, and Fert A 2016 Nat. Nanotechnol.11 444
[16]
Boulle O, Vogel J, Yang H, Pizzini S, de Chaves D S, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Stashkevich Y R A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, and Gaudin G 2016 Nat. Nanotechnol.11 449
Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature546 270
[19]
Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature546 265
[20]
Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature563 94
[21]
Han M G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D, and Zhu Y 2019 Nano Lett.19 7859
[22]
Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, and Wang W 2020 Nano Lett.20 868
[23]
Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Wong K, Fang C, Wan C, Han X et al.2020 Nat. Commun.11 3860
Yang S, Peng R, Jiang T, Liu Y, Feng L, Wang J, Chen L, Li X, and Nan C 2014 Adv. Mater.26 7091
[29]
Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C, and Kim J 2020 Nature578 75
[30]
Caretta L, Rosenberg E, Büttner F, Fakhrul T, Gargiani P, Valvidares M, Chen Z, Reddy P, Muller D A, Ross C A, and Beach G S D 2020 Nat. Commun.11 1090