摘要The one-dimensional quantum spin-1/2 model with nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic interaction is considered. The Hamiltonian is firstly rewritten in a form with rotated spin operators, then bosonized by using the linear spin wave approximation and then treated by using the Green function approach. An integral expression of the quantum correction to the classical ground state energy is derived. The critical behavior of the ground state energy in the vicinity of the transition point from the ferromagnetic to the singlet ground state is analyzed by numerical calculation and the result is −8γ2.
Abstract:The one-dimensional quantum spin-1/2 model with nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic interaction is considered. The Hamiltonian is firstly rewritten in a form with rotated spin operators, then bosonized by using the linear spin wave approximation and then treated by using the Green function approach. An integral expression of the quantum correction to the classical ground state energy is derived. The critical behavior of the ground state energy in the vicinity of the transition point from the ferromagnetic to the singlet ground state is analyzed by numerical calculation and the result is −8γ2.
[1] Diep H T 2004 Frustrated Spin Systems (Singapore: World Scientific)
[2] Mikeska H J and Kolezhuk A K 2004 Quantum magnetism ( Lecture Notes in Physics vol 645) ed Schollwöck U, Richter J, Farnell D J J and Bishop R F (Berlin: Springer) p 1
[3] Lu H T, Wang Y J, Qin S and Xiang T 2006 Phys. Rev. B 74 134425
[4] Jafari R and Langari A 2007 Phys. Rev. B 76 14412
[5] Härtel M, Richter J, Ihle D and Drechsler S L 2008 Phys. Rev. B 78 174412
[6] Dmitriev D V and Krivnov V Ya 2008 Phys. Rev. B 77 024401
[7] Richter J, Härtel M, Ihle D and Drechsler S L 2009 J. Phys.: Conf. Ser. 145 012064
[8] Furukawa S, Sato M and Furusaki A 2010 Phys. Rev. B 81 094430
[9] Zinke R, Richter J and Drechsler S L 2010 J. Phys.: Condens. Matt. 22 446002
[10] Enderle M, F å k B, Mikeska H J, Kremer R K, Prokofiev A and Assmus W 2010 Phys. Rev. Lett. 104 237207
[11] Hase M, Kuroe H, Ozawa K et al 2004 Phys. Rev. B 70 104426
[12] Masuda T, Zheludev A, Roessli B et al 2005 Phys. Rev. B 72 014405
[13] Drechsler S L, Richter J, Gippius A A et al 2006 Europhys. Lett. 73 83
[14] Park S, Choi Y J, Zhang C L and Cheong S W 2007 Phys. Rev. Lett. 98 057601
[15] Malek J, Drechsler S L, Nitzsche U, Rosner H and Eschrig H 2008 Phys. Rev. B 78 060508(R)
[16] Tarui Y, Kobayashi Y and Sato M 2008 J. Phys. Soc. Jpn. 77 043703
[17] Bader H P and Schilling R 1979 Phys. Rev. B 19 3556
[18] Hamada T, Kane J, Nakagawa S and Natsume Y 1988 J. Phys. Soc. Jpn. 57 1891
[19] Tonegawa T and Harada I 1989 J. Phys. Soc. Jpn. 58 2902
[20] Bursill R, Gehring G A, Farnell D J J et al 1995 J. Phys.: condens. Mater. 7 8605
[21] Krivnov V Ya and Ovchinnikov A A 1996 Phys. Rev. B 53 6435
[22] Dmitriev D V and Krivnov V Ya 2006 Phys. Rev. B 73 024402
[23] Dmitriev D V, Krivnov V Ya and Richter J 2007 Phys. Rev. B 75 014424
[24] Mahadavifar S 2008 J. Phys.: Condens. Matt. 20 335230
[25] Yamamoto S, Brehmer S and Mikeska H J 1998 Phys. Rev. B 57 13610
Ivanov N B 1998 Phys. Rev. B 57 14024
Ivanov N B et al 1998 Phys. Rev. B 58 14456
[26] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[27] Tyablikov S V 1967 Methods in the Quantum Theory of Magnetism (New York: Plenum)
[28] Fröbrich P and Kuntz P J 2006 Phys. Rep. 432 223
[29] Bogoliubov N N 1947 J. Phys. USSR 11 23
[30] Ovchinnikov A A 1967 JETP Lett. 5 48