Phase Transitions of Ferromagnetic Potts Models on the Simple Cubic Lattice
WANG Shun1 , XIE Zhi-Yuan1 , CHEN Jing1 , Bruce Normand2 , XIANG Tao1**
1 Institute of Physics, Chinese Academy of Sciences, Beijing 1001902 Department of Physics, Renmin University of China, Beijing 100872
Abstract :We investigate the 2- and 3-state ferromagnetic Potts models on the simple cubic lattice using the tensor renormalization group method with higher-order singular value decomposition (HOTRG). HOTRG works in the thermodynamic limit, where we use the Zq symmetry of the model, combined with a new measure for detecting the transition, to improve the accuracy of the critical point for the 2-state model by two orders of magnitude, obtaining Tc =4.51152469(1). The 3-state model is far more complex, and we improve the overall understanding of this case by calculating its thermodynamic quantities with high accuracy. Our results verify that the first-order nature of the phase transition and the HOTRG transition temperature benchmarks the most recent Monte Carlo result.
出版日期: 2014-06-30
[1] Potts R B 1952 Proc. Cambridge. Philos. Soc. 48 106 [2] Wu F Y 1982 Rev. Mod. Phys. 54 235 [3] Svetitsky B and Yaffe L G 1982 Nucl. Phys. B 210 423 [4] Berg B A, Meyer-Ortmanns H and Velytsky A 2004 Phys. Rev. D 70 054505 [5] Bazavov A and Berg B A 2007 Phys. Rev. D 75 094506 [6] Banavar J R, Grest G S and Jasnow D 1980 Phys. Rev. Lett. 45 1424 Banavar J R, Grest G S and Jasnow D 1982 Phys. Rev. B 25 4639 [7] Ueno Y, Sun G and Ono I 1989 J. Phys. Soc. Jpn. 58 1162 [8] Wang J S, Swendsen R H and Kotecky R 1989 Phys. Rev. Lett. 63 109 Wang J S, Swendsen R H and Kotecky R 1990 Phys. Rev. B 42 2465 [9] Rosengren A and Lapinskas S 1993 Phys. Rev. Lett. 71 165 [10] Ditzian R V and Oitmaa J 1974 J. Phys. A 7 L61 [11] Straley J P 1974 J. Phys. A 7 2173 [12] Enting I G 1974 J. Phys. A 7 1617 [13] Herrmann H J 1979 Z. Phys. B 35 171 [14] Blote H W J and Swendsen R H 1979 Phys. Rev. Lett. 43 799 [15] Jensen S J K and Mouritsen O G 1979 Phys. Rev. Lett. 43 1736 [16] Fukugita M and Okawa M 1989 Phys. Rev. Lett. 63 13 [17] Lee J and Kosterlitz J M 1991 Phys. Rev. B 43 1268 [18] Janke W and Villanova R 1997 Nucl. Phys. B 489 679 [19] Nishino T, Okunishi K, Hieida Y, Maeshima N and Akutsu Y 2000 Nucl. Phys. B 575 504 Gendiar A and Nishino T 2002 Phys. Rev. E 65 046702 [20] Bazavov A, Berg B A and Dubey S 2008 Nucl. Phys. B 802 421 [21] Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601 [22] Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T 2009 Phys. Rev. Lett. 103 160601 [23] Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W and Xiang T 2010 Phys. Rev. B 81 174411 [24] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139 [25] White S R 1992 Phys. Rev. Lett. 69 2863 [26] Chen Q N, Qin M P, Chen J, Wei Z C, Zhao H H, Normand B and Xiang T 2011 Phys. Rev. Lett. 107 165701 [27] Meurice Y 2013 Phys. Rev. B 87 064422 [28] Efrati E, Wang Z, Kolan A and Kadanoff L P 2013 arXiv:1301.6323v1[cond-mat.stat-mech] [29] Yu J F, Xie Z Y, Meurice Y, Liu Y, Denbleyker A, Zou H, Qin M P, Chen J and Xiang T 2014 Phys. Rev. E 89 013308 [30] Liu Y, Meurice Y, Qin M P, Yockey J U, Xiang T, Xie Z Y, Yu J F and Zou H 2013 Phys. Rev. D 88 056005 [31] Denbleyker A, Liu Y, Meurice Y, Qin M P, Xiang T, Xie Z Y, Yu J F and Zou H 2014 Phys. Rev. D 89 016008 [32] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603 [33] Gu Z C, Levin M and Wen X G 2008 Phys. Rev. B 78 205116 [34] Zhao H H, Xu C, Chen Q N, Wei Z C, Qin M P, Zhang G M and Xiang T 2012 Phys. Rev. B 85 134416 [35] Xie Z Y, Chen J, Yu J F, Kong X, Normand B and Xiang T 2014 Phys. Rev. X 4 011025 [36] de Lathauwer L, de Moor B and Vandewalle J 2000 SIAM J. Matrix Anal. Appl. 21 1253 [37] Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131 [38] Nishino T, Hieida Y, Okunishi K, Maeshima N, Akutsu Y and Gendiar A 2001 Prog. Theor. Phys. 105 409 [39] Gendiar A and Nishino T 2005 Phys. Rev. B 71 024404 [40] Chung S G 2006 Phys. Lett. A 359 707 [41] Butera P and Comi M 2000 Phys. Rev. B 62 14837 [42] Gupta R and Tamayo P 1996 Int. J. Mod. Phys. C 7 305 [43] Deng Y J and Blote H W J 2003 Phys. Rev. E 68 036125 [44] Hasenbusch M 2010 Phys. Rev. B 82 174433 [45] Ono I and Ito K 1982 J. Phys. C 15 4417 [46] Wilson W G and Vanse C A 1987 Phys. Rev. B 36 587 [47] Alves N A, Berg B A and Villanova R 1991 Phys. Rev. B 43 5846 [48] Miyashita R, Betts D D and Elliott C J 1979 J. Phys. A 12 1605
[1]
. [J]. 中国物理快报, 2023, 40(2): 20501-.
[2]
. [J]. 中国物理快报, 2022, 39(8): 80503-080503.
[3]
. [J]. 中国物理快报, 2022, 39(6): 67502-067502.
[4]
. [J]. 中国物理快报, 2020, 37(11): 117201-.
[5]
. [J]. 中国物理快报, 2017, 34(5): 50503-050503.
[6]
. [J]. 中国物理快报, 2014, 31(10): 100502-100502.
[7]
. [J]. 中国物理快报, 2014, 31(06): 60501-060501.
[8]
WANG Xiao-Hong**;ZHOU Quan
. Renormalization Group Analysis of Weakly Rotating Turbulent Flows [J]. 中国物理快报, 2011, 28(12): 124702-124702.
[9]
WANG Meng-Xiong;CAI Jian-Wei;XIE Zhi-Yuan;CHEN Qiao-Ni;ZHAO Hui-Hai;WEI Zhong-Chao. Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States [J]. 中国物理快报, 2010, 27(7): 76402-076402.
[10]
TU Tao;WANG Lin-Jun;HAO Xiao-Jie;GUO Guang-Can;GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation [J]. 中国物理快报, 2009, 26(6): 60501-060501.
[11]
LIU Zheng-Feng;WANG Xiao-Hong;. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique [J]. 中国物理快报, 2008, 25(2): 604-607.