Transformation Plasma Physics
Zeren Zhang and Jiping Huang*
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
Abstract :Plasma technology has widespread applications in many fields, whereas the methods for manipulating plasma transport are limited to magnetic control. In this study, we used a simplified diffusion-migration approach to describe plasma transport. The feasibility of the transformation theory for plasma transport was demonstrated. As potential applications, we designed three model devices capable of cloaking, concentrating, and rotating plasmas without disturbing the density profile of plasmas in the background. This research may help advance plasma technology in practical fields, such as medicine and chemistry.
收稿日期: 2022-04-24
Editors' Suggestion
出版日期: 2022-06-14
:
52.65.-y
(Plasma simulation)
52.25.Fi
(Transport properties)
81.05.Zx
(New materials: theory, design, and fabrication)
[1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley Interscience)
[2] Li M, Wang Z, Xu R, Zhang X, Chen Z, and Wang Q 2021 Aerosp. Sci. Technol. 117 106952
[3] Liang H, Ming F, and Alshareef H N 2018 Adv. Energy Mater. 8 1801804
[4] Samal S 2017 J. Cleaner Prod. 142 3131
[5] Tamura H, Tetsuka T, Kuwahara D, and Shinohara S 2020 IEEE Trans. Plasma Sci. 48 3606
[6] Pendry J B, Schurig D, and Smith D R 2006 Science 312 1780
[7] Leonhardt U 2006 Science 312 1777
[8] Guenneau S and Puvirajesinghe T M 2013 J. R. Soc. Interface 10 20130106
[9] Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907
[10] Chen T, Weng C N, and Chen J S 2008 Appl. Phys. Lett. 93 114103
[11] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[12] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502
[13] Huang J P 2020 ES Energy & Environ. 7 1
[14] Xu L J, Yang S, Dai G L, and Huang J P 2020 ES Energy & Environ. 7 65
[15] Hu R, Zhou S, Li Y, Lei D Y, Luo X, and Qiu C W 2018 Adv. Mater. 30 1707237
[16] Hu R, Huang S, Wang M, Luo X, Shiomi J, and Qiu C W 2019 Adv. Mater. 31 1807849
[17] Zhang J, Huang S, and Hu R 2021 Chin. Phys. Lett. 38 010502
[18] Chen F F 1974 Introduction to Plasma Physics and Controlled Fusion (Switzerland: Springer)
[19] Cui S, Wu Z, Lin H, Xiao S, Zheng B, Liu L, An X, Fu R K Y, Tian X, Tan W, and Chu P K 2019 J. Appl. Phys. 125 063302
[20] Dai G L 2021 Front. Phys. 16 53301
[21] Zhang Z, Xu L, and Huang J 2022 Adv. Theory Simul. 5 2100375
[22] Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Singapore: Springer)
[23] Lu X and Ostrikov K 2018 Appl. Phys. Rev. 5 031102
[24] Rodríguez J A, Abdalla A I, Wang B, Lou B, Fan S, and Cappelli M A 2021 Phys. Rev. Appl. 16 014023
[25] Inami C, Kabe Y, Noyori Y, Iwai A, Bambina A, Miyagi S, and Sakai O 2021 J. Appl. Phys. 130 043301
[26] Zhou X, Xu G, and Zhang H 2021 Compos. Struct. 267 113866
[27] Restrepo-Flórez J M and Maldovan M 2016 Sci. Rep. 6 21971
[28] Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050
[29] Narayana S and Sato Y 2012 Adv. Mater. 24 71
[30] Lan C, Yang Y, Geng Z, Li B, and Zhou J 2015 Sci. Rep. 5 16416
[31] Huang C W, Chen Y C, and Nishimura Y 2015 IEEE Trans. Plasma Sci. 43 675
[32] Yu Z Z, Xiong G H, and Zhang L F 2021 Front. Phys. 16 43201
[33] Xing G, Zhao W, Hu R, and Luo X 2021 Chin. Phys. Lett. 38 124401
[1]
. [J]. 中国物理快报, 2021, 38(8): 85202-.
[2]
. [J]. 中国物理快报, 2018, 35(4): 45202-.
[3]
. [J]. 中国物理快报, 2015, 32(07): 75202-075202.
[4]
. [J]. 中国物理快报, 2014, 31(07): 75201-075201.
[5]
. [J]. 中国物理快报, 2013, 30(6): 65203-065203.
[6]
. [J]. Chin. Phys. Lett., 2013, 30(3): 35201-035201.
[7]
. [J]. 中国物理快报, 2013, 30(2): 25201-025201.
[8]
. [J]. 中国物理快报, 2012, 29(8): 85203-085203.
[9]
LI Ming-Zhu;AN Zheng-Hua**;ZHOU Lei;MAO Fei-Long;WANG Heng-Liang
. Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities [J]. 中国物理快报, 2011, 28(7): 75206-075206.
[10]
CHEN Zhao-Quan;**;LIU Ming-Hai***;ZHOU Qi-Yan;HU Ye-Lin;YANG An;ZHU Long-Ji;HU Xi-Wei
. Numerical Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface [J]. 中国物理快报, 2011, 28(4): 45201-045201.
[11]
LIU Xiang-Mei;SONG Yuan-Hong;WANG You-Nian. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges [J]. 中国物理快报, 2009, 26(8): 85201-085201.
[12]
FENG Shuo;HE Feng;OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge [J]. 中国物理快报, 2007, 24(8): 2304-2307.
[13]
LIU Ming-Hai;HU Xi-Wei;JIANG Zhong-He;ZHANG Shu;PAN Yuan. Finite-Difference Time-Domain Analysis of Wave Propagation in a Thin Plasma Layer [J]. 中国物理快报, 2006, 23(2): 410-412.
[14]
FANG Tong-Zhen;OUYANG Jian-Ming;WANG Long. Simulation of Chemical Processes in Repetitively Pulsed Atmospheric Plasmas [J]. 中国物理快报, 2005, 22(11): 2888-2891.
[15]
WANG Yan-Hui;WANG De-Zhen. Modes of Homogeneous Barrier Discharge at Atmospheric Pressure in Helium [J]. 中国物理快报, 2004, 21(11): 2234-2237.